Antonie van Leeuwenhoek

, Volume 71, Issue 1–2, pp 95–107 | Cite as

Oxidative metabolism of inorganic sulfur compounds by bacteria

  • Donovan P. Kelly
  • Jasvinder K. Shergill
  • Wei-Ping Lu
  • Ann P. Wood


The history of the elucidation of the microbiology and biochemistry of the oxidation of inorganic sulfur compounds in chemolithotrophic bacteria is briefly reviewed, and the contribution of Martinus Beijerinck to the study of sulfur-oxidizing bacteria highlighted. Recent developments in the biochemistry, enzymology and molecular biology of sulfur oxidation in obligately and facultatively lithotrophic bacteria are summarized, and the existence of at least two major pathways of thiosulfate (sulfur and sulfide) oxidation confirmed. These are identified as the ‘Paracoccus sulfur oxidation’ (or PSO) pathway and the ‘S4intermediate’ (or S4I) pathway respectively. The former occurs in organisms such as Paracoccus (Thiobacillus) versutus and P. denitrificans, and possibly in Thiobacillus novellus and Xanthobacter spp. The latter pathway is characteristic of the obligate chemolithotrophs (e.g. Thiobacillus tepidarius, T. neapolitanus, T. ferrooxidans, T. thiooxidans) and facultative species such as T. acidophilus and T. aquaesulis, all of which can produce or oxidize tetrathionate when grown on thiosulfate. The central problem, as yet incompletely resolved in all cases, is the enzymology of the conversion of sulfane-sulfur (as in the outer [S-] atom of thiosulfate [-S-SO3-]), or sulfur itself, to sulfate, and whether sulfite is involved as a free intermediate in this process in all, or only some, cases. The study of inorganic sulfur compound oxidation for energetic purposes in bacteria (i.e. chemolithotrophy and sulfur photolithotrophy) poses challenges for comparative biochemistry. It also provides evidence of convergent evolution among diverse bacterial groups to achieve the end of energy-yielding sulfur compound oxidation (to drive autotrophic growth on carbon dioxide) but using a variety of enzymological systems, which share some common features. Some new data are presented on the oxidation of 35S-thiosulfate, and on the effect of other anions (selenate, molybdate, tu ngstate, chromate, vanadate) on sulfur compound oxidation, including observations which relate to the roles of polythionates and elemental sulfur as intermediates.

sulfur bacteria sulfur oxidation pathways thiobacilli thiosulfate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beffa T, Berczy M & Aragno M (1991) Chemolithoautotrophic growth on elemental sulfur (S°) and respiratory oxidation of S° by Thiobacillus versutus and another sulfur-oxidizing bacterium. FEMS Microbiol. Lett. 84: 285–290Google Scholar
  2. Beffa T, Fischer C & Aragno M (1992) Respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus tepidarius (type strain). Arch. Microbiol. 158: 456–458Google Scholar
  3. Beffa T, Fischer C & Aragno M (1993) Growth and respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus novellus (type strain) grown on thiosulfate. Curr. Microbiol. 26: 323–326Google Scholar
  4. Beggiato FS (1838) Memoria della terme Euganee. PaduaGoogle Scholar
  5. Beijerinck MW (1904a) Ueber die Bakterien, welche sich im Dunkeln mit Kohlensäure als Kohlenstoffquelle ernähren können. Centralbl. Bakteriol. Abt. II 11: 593–599Google Scholar
  6. Beijerinck MW (1904b) Phénomènes de réduction par les microbes. Arch. Neer. Sci. (Sect. 2) 9: 131–157Google Scholar
  7. Beijerinck MW & Minkman DC (1910) Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralbl. Bakteriol. Abt. II 25: 30–63Google Scholar
  8. Cammack R, Chapman A, Lu W-P, Karagouni A & Kelly DP (1989) Evidence that protein B of the thiosulphate-oxidizing system of Thiobacillus versutus contains a binuclear manganese cluster. FEBS Lett. 253: 239–243Google Scholar
  9. Chandra TS & Friedrich CG (1986) Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J. Bacteriol. 166: 446–452Google Scholar
  10. Cohn F (1865) Zwei neue Beggiatoen. Hedwigia 4: 81–84Google Scholar
  11. Ehrenberg C (1830) Neue Beobachtungen über blutartige Erscheinungen in Ägypten, Arabien und Siberien, nebst einer Übersicht und Kritik der früher bekannten. Annal. Phys. Chem. 18: 477–514Google Scholar
  12. Fersht A (1985) Enzyme structure and function, 2nd ed. WH Freeman & Co, New York Friedrich CG & Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10: 209–212Google Scholar
  13. Friedrich CG, Meyer, O & Chandra TS (1986) Molybdenum-dependent sulfur oxidation in facultatively lithoautotrophic thiobacteria. FEMS Microbiol. Lett. 37: 105–108Google Scholar
  14. Jordan SL, Kraczkiewicz-Dowjat, Kelly DP & Wood AP (1995) Novel eubacteria able to grow on carbon disulfide. Arch. Microbiol. 163: 131–137Google Scholar
  15. Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil. Trans. Roy. Soc. Lond. B298: 499–528Google Scholar
  16. — (1985) Physiology of the thiobacilli: elucidating the sulphur oxidation pathway. Microbiol. Sci. 2: 105–109Google Scholar
  17. — (1988) Oxidation of sulphur compounds. Soc. Gen. Microbiol. Symp. 42: 65–98Google Scholar
  18. — (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Biology of autotrophic bacteria (Schlegel HG & Bowien B eds) pp 193–217. Science Tech Publishers, Madison, WisconsinGoogle Scholar
  19. — (1990) Energetics of chemolithotrophic bacteria. In: Bacterial energetics (Krulwich TA ed) pp 479–503. Academic Press, San Diego.Google Scholar
  20. Kelly DP & Syrett PJ (1966) [35S]Thiosulphate oxidation by Thiobacillus strain C. Biochem. J. 98: 537–545Google Scholar
  21. Kelly DP and Tuovinen OH (1975) Metabolism of inorganic sulphur compounds by Thiobacillus ferrooxidans and some comparative studies on Thiobacillus A2 and T. neapolitanus. Plant & Soil 43: 77–93Google Scholar
  22. Kelly DP & Wood AP (1994a) Synthesis and determination of thiosulfate and polythionates. Methods in Enzymology 243: 475–501Google Scholar
  23. — (1994b) Enyzmes involved in the microbiological oxidation of thiosulfate and polythionates. Methods in Enzymology 243: 501–510Google Scholar
  24. — (1994c) Whole organism methods for inorganic sulfur oxidation by chemo-and photo-lithotrophs. Methods in Enzymology 243: 510–520Google Scholar
  25. Kelly DP, Lu W-P & Poole RK (1993a) Cytochromes in Thiobacillus tepidarius and the respiratory chain involved in the oxidation of thiosulphate and tetrathionate. Arch. Microbiol. 160: 87–95Google Scholar
  26. Kelly DP, Malin G & Wood AP (1993b) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Microbial growth on C1 compounds (Murrell JC & Kelly DP (Eds.), pp. 47–63. Intercept, AndoverGoogle Scholar
  27. Kluyver AJ & Donker HJL (1926) Die Einheit in der Biochemie. Chemie Zelle Gewebe 13: 134–190Google Scholar
  28. Kraczkiewicz-Dowjat AJ & Kelly DP (1985) Isolation and partial characterization of mutants of Thiobacillus versutus deficient in autotrophic metabolism. Microbios 44: 185–199Google Scholar
  29. Lu W-P, & Kelly DP (1983) Purification and some properties of two principal enzymes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus A2. J. Gen. Microbiol. 129: 3549–3564Google Scholar
  30. — (1984a) Properties and role of sulphite cytochrome c oxido-reductase purified from Thiobacillus versutus (A2). J. Gen.Microbiol. 130: 1683–1692Google Scholar
  31. — (1984b) Purification and characterization of two essential cytochromes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus A2 (Thiobacillus versutus). Biochim. Biophys. Acta 765: 106–117Google Scholar
  32. — (1988a) Chemolithotrophic ATP synthesis and NAD(P) reduction in Thiobacillus tepidarius and T. versutus. Arch. Microbiol. 149: 303–307Google Scholar
  33. — (1988b) Cellular location and partial purification of the ‘thiosulphate-oxidizing enzyme’ and ‘trithionate hydrolase’ from Thiobacillus tepidarius. J. Gen. Microbiol. 134: 877–885Google Scholar
  34. Lu W-P, Poole RK & Kelly DP (1984) Oxidation-reduction potentials and spectral properties of some cytochromes from Thiobacillus versutus (A2). Biochim. Biophys. Acta 767: 326–334Google Scholar
  35. Lu W-P, Swoboda BEP & Kelly DP (1985) Properties of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus. Biochim. Biophys. Acta 828: 116–122Google Scholar
  36. Meulenberg R, Pronk JT, Frank J, Hazeu W, Bos P & Kuenen JG (1992) Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus. Eur. J. Biochem. 209: 367–374Google Scholar
  37. Meulenberg R, Scheer EJ, Pronk JT, Hazeu W, Bos P & Kuenen JG (1993) Metabolism of tetrathionate in Thiobacillus acidophilus. FEMS Microbiol. Lett. 112: 167–172Google Scholar
  38. Mittenhuber G, Sonomoto K, Egert M & Friedrich CG (1991) Identification of the DNA region responsible for sulfur-oxidizing ability in Thiosphaera pantotropha. J. Bacteriol. 173: 7340–7344Google Scholar
  39. Nathansohn A (1902) Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. zool. Stn. Neapel 15: 655–680Google Scholar
  40. Pronk JT, Meulenberg R, Hazeu W, Bos P & Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol. Rev. 75: 293–306Google Scholar
  41. Schneider A & Friedrich CG (1994) Sulfide dehydrogenase is identical with the soxB protein of the thiosulfate-oxidizing enzyme system of Paracoccus denitrificans GB17. FEBS Lett. 350: 61–65Google Scholar
  42. Steudel R, Holdt G, Göbel T & Hazeu W (1987) Chromatographic separation of higher polythionates SnO6 2− (n = 3... 22) and their detection in cultures of Thiobacillus ferrooxidans: molecular composition of bacterial sulfur secretions. Ang. Chem. 26: 151–153Google Scholar
  43. Takakuwa S (1992) Biochemical aspects of microbial oxidation of inorganic sulfur compounds. In: Organic sulfur chemistry: biochemical aspects (Oae S & Okuyama T (Eds.), pp. 1–43. CRC Press, Boca RatonGoogle Scholar
  44. Tamiya H, Haga K & Huzisige H (1941) Zur Physiologie der chemoautotrophen Schwefelbakterien. I. Acta Phytochim., Tokyo 12: 173–225Google Scholar
  45. Tan J & Cowan JA (1990) Coordination and redox properties of a novel triheme cytochrome from Desulfovibrio vulgaris (Hilden-borough). Biochem. 29: 4886–4892Google Scholar
  46. Trudinger PA (1964) Evidence for a four-sulphur intermediate in thiosulphate oxidation by Thiobacillus X. Aust. J. Biol. Sci. 17: 577–579Google Scholar
  47. van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3: 1–112Google Scholar
  48. — (1936) On the metabolism of the Thiorhodaceae. Arch. Mikrobiol. 7: 323–358Google Scholar
  49. Vishniac W & Santer M (1957) The thiobacilli. Bacteriol. Rev. 21: 195–213Google Scholar
  50. Winogradsky S (1887) Ueber Schwefelbakterien. Botan. Ztg. 45: 489–507, 513–523Google Scholar
  51. Wodara C, Kostka S, Egert M, Kelly DP & Friedrich CG (1994) Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J. Bacteriol. 176: 6188–6191Google Scholar
  52. Wood AP & Kelly DP (1987) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch. Microbiol. 144: 71–77Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Donovan P. Kelly
    • 1
  • Jasvinder K. Shergill
    • 2
  • Wei-Ping Lu
    • 3
  • Ann P. Wood
    • 2
  1. 1.Institute of EducationUniversity of WarwickCoventryUK
  2. 2.Division of Life SciencesKing's College LondonLondonUK
  3. 3.Proctor & Gamble, Sharon Woods Technical Center, Bldg. CCincinattiUSA

Personalised recommendations