Skip to main content
Log in

Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interrelationship between defect chemistry, non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites (doped alkaline earth cerates and zirconates) has been investigated. Non-stoichiometry, defined as the deviation of the A : M molar ratio in AMO3 from 1 : 1, dramatically impacts conductivity, sinterability and chemical stability with respect to reaction with CO2. In particular, alkaline earth deficiency encourages dopant incorporation onto the A-atom site, rather than the intended M-atom site, reducing the concentration of oxygen vacancies. Transport along grain boundaries is, in general, less favorable than transport through the bulk, and thus only in fine-grained materials does microstructure impact the overall electrical properties. The chemical stability of high conductivity cerates is enhanced by the introduction of Zr. The conductivity of BaCe0.9−x Zr x M0.1O3 perovskites monotonically decreases with increasing x (increasing Zr content), with the impact of Zr substitution increasing in the order M = Yb → Gd → Nd. Furthermore, the magnitude of the conductivity follows the same sequence for a given zirconium content. This result is interpreted in terms of dopant ion incorporation onto the divalent ion site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3/4 (1981) 359.

    Google Scholar 

  2. N. Fukatsu, N. Kurita, T. Yajima, K. Koide K and T. Ohashi, J. Alloy Compd. 231 (1995) 706.

    Google Scholar 

  3. H. Iwahara, T. Yajima, T. Hibino and H. Ushida, J. Electrochem. Soc. 140 (1993) 1687.

    Google Scholar 

  4. K. D. Kreuer, E. SchÖnherr and J. Maier, in Proceedings of the 14th Risø International Symposium on Materials Science, Risø Natl. Lab., Roskilde, Denmark, 1993.

  5. D. Shima and S. M. Haile, Solid State Ionics 97 (1997) 443.

    Google Scholar 

  6. J. Guan, S. E. Dorris, U. Balachandran and M. Liu, J. Electrochem. Soc. 145 (1998) 1780.

    Google Scholar 

  7. G. Ma, T. Shimura and H. Iwahara, Solid State Ionics 110 (1998) 103.

    Google Scholar 

  8. G. Ma, H. Matsumoto and H. Iwahara, ibid. 122 (1999) 237.

    Google Scholar 

  9. R. A. Davies, M. S. Islam and J. D. Gale, ibid. 126 (1999) 323.

    Google Scholar 

  10. A. S. Nowick and Y. Du, ibid. 77 (1995) 137.

    Google Scholar 

  11. S. M. Haile, D. West and J. Campbell, J. Mater. Res. 13 (1998) 1576.

    Google Scholar 

  12. F. Krug, T. Schober, R. Paul and T. Springer, Solid State Ionics 77 (1995) 185.

    Google Scholar 

  13. J. Luyten, F. De Schutter, J. Schram and J. Schoonman, ibid. 46 (1991) 117.

    Google Scholar 

  14. R. D. Shannon, Acta Cryst A 32 (1976) 751.

    Google Scholar 

  15. H. Nagamoto and H. Yamada, in Proceedings of the 2nd International Symposium on Ionic and Mixed Conducting Ceramics, San Francisco, 1994, edited by T. A. Ramanarayanan, W. L. Worrell and H. L. Tuller (The Electrochemical Society, Pennington, NJ, 1994) p. 39.

    Google Scholar 

  16. A. A. Ferreira, J. A. Labrincha and J. R. Frade, Solid State Ionics 77 (1995) 210.

    Google Scholar 

  17. D. W. Richardson, in “Modern Ceramic Engineering,” 2nd ed. (Marcel Dekker, Inc., New York, 1992) p. 528.

    Google Scholar 

  18. R. Saha, R. Babu, K. Nagarajan and C.K. Mathews, Thermochimica Acta 120 (1987) 29.

    Google Scholar 

  19. N. Bonanos, B. C. H. Steele and E. P. Butler, in “Impedance Spectroscopy,” edited by J. R. MacDonald (Wiley and Sons, New York, USA, 1988) p. 191.

    Google Scholar 

  20. H. Nafe, Solid State Ionics 13 (1984) 255.

    Google Scholar 

  21. X. Guo and R.-Z. Yuan, J. Mater. Sci. Lett. 14 (1995) 499.

    Google Scholar 

  22. G. M. Christie and F. P. F. Van Berkel, Solid State Ionics 83 (1996) 17.

    Google Scholar 

  23. J. Fleig and J. Maier, J. Electrochem. Soc. 145 (1998) 2081.

    Google Scholar 

  24. J. R. Macdonald and W. B. Johnson, in “Impedance Spectroscopy,” edited by J. R. MacDonald (Wiley and Sons, New York, 1988) p. 1.

    Google Scholar 

  25. D. L. West, M.S. Thesis, University of Washington, 1996 p. 72.

  26. K. D. Kreuer, Solid State Ionics 97 (1997) 1.

    Google Scholar 

  27. I. Barin, “Thermochemical Data of Pures Substances: Vols 1 & 2” (VCH Publishers, New York, 1989).

    Google Scholar 

  28. E. Takayama-Muromachi and A. Navrotsky, J. Solid State Chem. 72 (1988) 244.

    Google Scholar 

  29. J. Goudiakas, R. G. Haire and J. Fuger, J. Chem. Thermodynamics 22 (1990) 577.

    Google Scholar 

  30. E. H. P. Cordfunke, A. S. Booij and M. E. Huntelaar, ibid. 30 (1998) 437.

    Google Scholar 

  31. L. R. Mensch and N. Mensi, in Proceedings of the 15th Rare Earth Research Conference, June 15-18, 1981, Univ. of Missouri, Rolla, edited by G. J. McCarthy and J. J. Rhyne (Plenum Press, New York, 1982) p. 279.

    Google Scholar 

  32. S. Gopalan and A. V. Virkar, J. Electrochem. Soc. 140 (1993) 1060.

    Google Scholar 

  33. K. T. Jacob and Y. Waseda, Met. Mat. Trans. 26B (1995) 775.

    Google Scholar 

  34. L. R. Morss, J. Less Comm. Met. 93 (1983) 301.

    Google Scholar 

  35. R. T. C. Slade, S. D. Flint and F. Singh, Solid State Ionics 82 (1995) 135.

    Google Scholar 

  36. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki and H. Suzuki, ibid. 61 (1993) 65.

    Google Scholar 

  37. W. MÜnch, G. Seifert, K. D. Kreuer and J. Maier, ibid. 97 (1997) 39.

    Google Scholar 

  38. K. D. Kreuer,ibid. 125 (1999) 285.

    Google Scholar 

  39. H. G. Bohn and T. Schober, J. Amer. Ceram. Soc. 83 (2000) 768.

    Google Scholar 

  40. M. D. Mathews, E. B. Mizra and A. C. Momin, J. Mater. Sci. Lett. 10 (1991) 305.

    Google Scholar 

  41. K. S. Knight, Solid State Ionics 74 (1994) 109.

    Google Scholar 

  42. I. Charrier-Cougoulic, T. Pagnier and G. Lucazea, J. Solid State Chem. 142 (1999) 220.

    Google Scholar 

  43. T. Matzke and M. Cappadonia, Solid State Ionics 86-88 (1996) 659.

    Google Scholar 

  44. N. Sata, H. Yugami, Y. Akiyama, H. Sone, N. Kitamura, T. Hattori and M. Ishigame, ibid. 125 (1999) 383.

    Google Scholar 

  45. D. West, S. M. Haile and R. S. Feigelson, Mat. Res. Soc. Symp. Proc. 393 (1995) 31.

    Google Scholar 

  46. K. H. Ryu and S. M. Haile, Solid State Ionics 125 (1999) 355.

    Google Scholar 

  47. D. A. Stevenson, N. Jiang, R. M. Buchanan and F. E. G. Henn, ibid. 62 (1993) 279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haile, S.M., Staneff, G. & Ryu, K.H. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. Journal of Materials Science 36, 1149–1160 (2001). https://doi.org/10.1023/A:1004877708871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004877708871

Keywords

Navigation