Skip to main content
Log in

Copper Complexation with the Mellitic Acid Series

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The formation constants for copper complexes with the mellitic acid series, a series of aromatic carboxylic acids, were determined from potentiometric copper titrations. Formation constants were determined for copper complexation with hemimellitic acid, trimellitic acid, trimesic acid, pyromellitic acid, and mellitic acid at five pH values (3.00, 4.00, 5.00, 5.75, 6.75) for each organic acid. The ionic strength of the solutions was 0.1M and the temperature was 25°C for all titrations. Free copper-ion activity was monitored with an ion-specific electrode. Relevant complexation reactions and corresponding stability constants for description of the experimental data were determined by application of the nonlinear parameter optimization program FITEQL to the experimental data. Testing various possible complexes revealed that the simple 1:1 complexes of CuL and CuHL (where L represents the fully deprotonated organic ligand) could describe all of the data. The logarithms of the complex formation constants for the CuL species ranged from 2.67 for trimesic acid to 6.23 for mellitic acid, and for the CuHL species from 2.47 for trimellitic acid to 5.03 for mellitic acid. The logarithms of the extracted metal–organic ligand complex formation constants were found to correlate well with the logarithms of organic acid dissociation constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 3. Other Organic Ligands (Plenum, New York, 1977).

    Google Scholar 

  2. U.S. Department of Commerce, Critical Stability Constants of Metal Complexes, NIST Standard Reference Database 46 (National Institute of Standards and Technology, Gaithersburg, MD, 1994).

    Google Scholar 

  3. E. Nieboer and W. A. E. McBryde, Can. J. Chem. 48, 2549 (1970).

    Google Scholar 

  4. R. M. Smith, A. E. Martell, and R. J. Motekaitis, Inorg. Chim. Acta 99, 207 (1985).

    Google Scholar 

  5. H. Irving and H. Rossotti, Acta Chem. Scand. 10, 72 (1956).

    Google Scholar 

  6. E. M. Thurman, Organic Geochemistry of Natural Waters (Kluwer Academic Publishers, 1985).

  7. E. M. Perdue, in Humic Substances in Soil, Sediment, and Water, Vol. 1, Chap. 20, G. R. Aiken, D. M. McKnight, D. M. Wershaw, and R. L. McCarthy, eds. (Wiley, New York, 1985).

    Google Scholar 

  8. M. Taga, S. Tanaka, and M. Fukushima, Anal. Chim. Acta. 244, 281 (1991).

    Google Scholar 

  9. M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, and L. K. Koopal, Environ. Sci. Technol. 29, 2 (1995).

    Google Scholar 

  10. E. M. Perdue and C. R. Lytle, Environ. Sci. Technol. 17, 11 (1983).

    Google Scholar 

  11. J. H. Ephraim, Sci. Total Environ. 108, 261 (1991).

    Google Scholar 

  12. J. Buffle, Complexation Reactions in Aquatic Systems (Ellis Horwood, Chichester, 1988).

    Google Scholar 

  13. F. M. M. Morel and J. G. Hering, in Aquatic Chemical Kinetics, W. Stumm, ed. (Wiley, New York, 1990).

    Google Scholar 

  14. R. F. Breault, J. A. Colman, G. R. Aiken, and D. McKnight, Environ. Sci. Technol. 30, 12 (1996).

    Google Scholar 

  15. R. W. Winner, Aquatic Toxicol. 5, 267 (1984).

    Google Scholar 

  16. R. C. Playle and D. G. Dixon, Can. J. Fish. Aquat. Sci. 50, 2678 (1993).

    Google Scholar 

  17. D. B. Buchwalter, G. Linder, and L. R. Curtis, Environ. Toxicol. Chem. 15, 4 (1996).

    Google Scholar 

  18. N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. M. Singh, Biochemistry 5, 267 (1966).

    Google Scholar 

  19. F. M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry (Wiley, New York, 1993).

    Google Scholar 

  20. C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  21. A. L. Herbelin and J. C. Westall, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.1, Report 94-01 (Oregon State University, Department of Chemistry, Corvallis, OR, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giammar, D.E., Dzombak, D.A. Copper Complexation with the Mellitic Acid Series. Journal of Solution Chemistry 27, 89–105 (1998). https://doi.org/10.1023/A:1022644713359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022644713359

Navigation