Skip to main content
Log in

Chromosomal Localization and Heterochromatin Association of Ribosomal RNA Gene Loci and Silver-stained Nucleolar Organizer Regions in Salmonid Fishes

  • Published:
Chromosome Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ballard WM (1973) Normal embryonic stages for salmonid fishes, based on Salmo gairdneri Richardson and Salvelinus fontinalis (Mitchill). J Exp Zool 148: 7–26.

    Google Scholar 

  • Busby SJ, Reeder RH (1983) Spacer sequences regulate transcription of ribosomal gene plasmids injected into xenopus embryos. Cell 34: 989–996.

    Google Scholar 

  • Dean JM (1969) The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp Biochem Physiol 29: 185–196.

    Google Scholar 

  • de Capoa A, Marlekaj P, Baldini A et al. (1985) Cytologic demonstration of differential activity of rRNA gene clusters in different human tissues. Hum Genet 69: 212–217.

    Google Scholar 

  • de Capoa A, Felli MP, Baldini A et al. (1988) Relationship between the number and function of human ribosomal genes. Hum Genet 79: 301–304.

    Google Scholar 

  • Emerson BM, Roeder RG (1984) DNA sequences and transcription factor interactions of active and inactive forms of mammalian 5S RNA genes. J Biol Chem 259: 7926–7935.

    Google Scholar 

  • Fitch DHA, Strausbaugh LD, Barret V (1990) On the origins of tandemly repeated genes: Does histone gene copy number in Drosophila reflect chromosomal location? Chromosoma 99: 118–124.

    Google Scholar 

  • Foresti F, Toledo LF, Almeida SA et al. (1981) Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet Cell Genet 62: 137–144.

    Google Scholar 

  • Fujiwara A, Abe S, Yamaha E et al. (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106: 44–52.

    Google Scholar 

  • Hartley SE, Horne MT (1984) Chromosome relationships in the genus Salmo. Chromosoma 90: 229–237.

    Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experimentia 36: 1014–1015.

    Google Scholar 

  • Inokuchi T, Abe S, Yamaha E et al. (1994) BrdU replication banding studies on the chromosomes in early embryos of salmonid fishes. Hereditas 121: 255–265.

    Google Scholar 

  • Johnson KR, Wright JE, May B (1987) Linkage relationships reflecting ancestral tetraploidy in Salmonid fish. Genetics 116: 579–591.

    Google Scholar 

  • Jordan G (1987) At the heart of the nucleolus. Nature 329: 489–499.

    Google Scholar 

  • Komiya H, Takemura S (1979) Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J Biochem 86: 1067–1080.

    Google Scholar 

  • Lee GM, Wright JE Jr (1981) Mitotic and meiotic analyses of brook trout, Salvelinus fontinalis. J Hered 72: 321–327.

    Google Scholar 

  • Lozano R, Rejón CR, Rejón MR (1991) An analysis of coho salmon chromatin by means of C-banding, AG-and fluorochrome staining, and in situ digestion with restriction endonucleases. Heredity 66: 403–409.

    Google Scholar 

  • Lozano R, Rejón CR, Rejón MR (1992) A comparative analysis of NORs in diploid and triploid salmonid: Implications with respect to the diploidization process occurring in this fish group. Heredity 69: 450–457.

    Google Scholar 

  • Mayr B, Rab P, Kalat M (1986) Localization of NORs and counterstain-enhanced fluorescence studies in Salmo gairdneri and Salmo trutta (Pisces, Salmonidae). Theor Appl Genet 71: 703–707.

    Google Scholar 

  • Morán P, Martínez JL, Garcia-Vázquez E et al. (1996) Sex chromosome linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss). Cytogenet Cell Genet 75: 145–150.

    Google Scholar 

  • Moss T (1983) A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302: 223–228.

    Google Scholar 

  • Nazar RN, Roy KL (1978) Nucleotide sequence of rainbow trout (Salmo gairdneri) ribosomal 5.8S ribonucleic acid. J Biol Chem 253: 395–399.

    Google Scholar 

  • Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59: 169–187.

    Google Scholar 

  • Oliveira C, Foresti F, Rigolino MG et al. (1995) Synaptonemal complex analysis in spermatocytes and oocytes of rainbow trout, Oncorhynchus mykiss (Pisces, Salomonidae): The process of autosome and sex chromosome synapsis. Chromosome Res 3: 182–190.

    Google Scholar 

  • Padilla JA, Fernández-García JL, Rabasco A et al. (1993) Characterization of the karyotype of the tench (Tinca tinca L.) and analysis of its chromosomal heterochromatic regions by C-banding, Ag-staining, and restriction endonuclease banding. Cytogenet Cell Genet 62: 220–223.

    Google Scholar 

  • Pardue ML, Brown DD, Birnstiel ML (1973) Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma 42: 191–203.

    Google Scholar 

  • Pendás AM, Morán P, Garcia-Vázquez E (1993a) Multi-chromosomal location of ribosomal RNA genes and heterochromatin association in brown trout. Chromosome Res 1: 63–67.

    Google Scholar 

  • Pendás AM, Morán P, Garcia-Vázques E (1993b) Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Cell Genet 63: 128–130.

    Google Scholar 

  • Pendás AM, Morán P, Freiji JP et al. (1994) Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Cell Genet 67: 31–36.

    Google Scholar 

  • Phillips RB, Ihssen PE (1985) Chromosome banding in salmonid fish: Nucleolar organizer regions in Salmo and Salvelinus. Can J Genet Cytol 27: 433–440.

    Google Scholar 

  • Phillips RB, Pleyte KA, Hartley SE (1988) Stock-specific differences in the number and chromosome positions of the nucleolar organizer regions in arctic char (Salvelinus alpinus). Cytogenet Cell Genet 48: 9–12.

    Google Scholar 

  • Reeder RH (1990) rRNA synthesis in the nucleolus. Trends Genet 6: 390–395.

    Google Scholar 

  • Reeder RH, Roan JG (1984) The mechanism of nucleolar dominance in xenopus hybrids. Cell 38: 39–44.

    Google Scholar 

  • Reeder RH, Roan JG, Dunaway M (1983) Spacer regulation of xenopus ribosomal gene transcription: Competition in oocytes. Cell 35: 449–456.

    Google Scholar 

  • Sánchez L, Martínez P, Viñas A et al. (1990) Analysis of the structure and variability of nucleolar organizer regions of Salmo trutta by C-, Ag-, and restriction endonuclease banding. Cytogenet Cell Genet 54: 6–9.

    Google Scholar 

  • Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in Amphibia. XI. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95: 271–284.

    Google Scholar 

  • Schmidtke J, Zenzes MT, Weiler C et al. (1976) Gene action in fish of tetraploid origin. IV. Ribosomal DNA amount in Clupeoid and Salmonid fish. Biochem Genet 14: 293–297.

    Google Scholar 

  • Sommerville J (1986) Nucleolar structure and ribosome biogenesis. Trends Biochem Sci 11: 438–442.

    Google Scholar 

  • Sola L, Rossi AR, Iaselli V et al. (1992) Cytogenetics of bisexual/ unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet Cell Genet 60: 229–235.

    Google Scholar 

  • Stephenson EC, Erba HP, Gall JG (1981) Histone gene clusters of the newt Notophthalmus are separated by long tracts of satellite DNA. Cell 24: 639–647.

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.

    Google Scholar 

  • Thorgaard GH (1977) Heteromorphic sex chromosome in male rainbow trout. Science 196: 900–902.

    Google Scholar 

  • Ueda T, Kobayashi J (1990) Disappearance of Ag-NORs originated from maternal species in hybrids between female Atlantic salmon and male brown trout. Chrom Inform Serv 49: 25–26.

    Google Scholar 

  • Ueda T, Sato R, Kobayashi J (1988) Silver-banded karyotypes of the rainbow trout and the brook trout and their hybrids: Disappearance in allotriploids of Ag-NORs originated from the brook trout. Jpn J Genet 63: 219–226.

    Google Scholar 

  • Vitelli L, Batistoni R, Andronico F et al. (1982) Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionarily diverse anuran amphibians. Chromosoma 84: 475–491.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromosomal Localization and Heterochromatin Association of Ribosomal RNA Gene Loci and Silver-stained Nucleolar Organizer Regions in Salmonid Fishes. Chromosome Res 6, 463–471 (1998). https://doi.org/10.1023/A:1009200428369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009200428369

Keywords

Navigation