Skip to main content
Log in

Effect of thermal stress on antioxidant responses of the biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae)

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Galerucella placida Baly feeds on the rice-field weed Polygonum orientale L. (Polygonaceae) in India and Bangladesh during autumn and winter seasons. The insect is widely available during the winter season when the temperature fluctuates between 9 and 24 °C. Hence, it is of considerable interest to study how the adults cope with the stress resulting due to temperature fluctuations. Consequently, we analysed the levels of H2O2, antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD), peroxidases (POD), guaiacol peroxidase (GPX), pyrogallol peroxidases (PPX), ascorbate peroxidases (APOX) and glutathione-S-transferases (GST)] and malondialdehyde (MDA) at 9,12,15,18, 21 and 24 °C in adult G. placida. H2O2 was highest at 24 °C followed by 9 °C and lowest at 18 and 21°C. CAT and SOD were highest at 9 °C followed by 24 °C, while POD was highest at 24 °C followed by 9 °C. CAT and POD were lowest at 18 and 21 °C, but SOD was the lowest at 21 °C. APOX were three-fold higher at 9 °C compared to 12 °C, which was the lowest at 18 and 21 °C, implying that APOX had strong detoxification function at 9 °C. GST was highest and lowest at 9 and 21 °C, respectively. MDA was highest at 9 °C and lowest at 18 and 21 °C, which did not differ significantly at 15 and 24 °C, suggesting that lower and higher temperature stress was accompanied by lipid peroxidation. This finding provides useful information for mass rearing of G. placida for predicting population dynamics and understanding the potential for G. placida as biocontrol agent under varying environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S. and Pardini R. S. (1990) Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radical Biology and Medicine 8, 401–413.

    Article  CAS  Google Scholar 

  • Ahmad S., Duval D. L., Weinhold L. C. and Pardini R. S. (1991) Cabbage looper antioxidant enzymes: Tissue specificity. Insect Biochemistry 21, 563–572.

    Article  CAS  Google Scholar 

  • Ali A., Rashid M. A., Huang Q. Y., Wong C. and Lei C. L. (2017) Response of antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae) exposed to thermal stress. Bulletin of Entomological Research 107, 382–390.

    Article  CAS  Google Scholar 

  • An M. I. and Choi C. Y. (2010) Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: Effects on hemolymph and biochemical parameters. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology 155, 34–42.

    Article  Google Scholar 

  • Apel K. and Hirt H. (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.

    Article  CAS  Google Scholar 

  • Bale J. S., Masters G.J., Hodkinson I. D., Awmack C., Bezemer T. M., Brown V. K., Butterfield J., Buse A., Coulson J. C., Farrar J., Good J. E. G., Harrington R., Hartley S., Jones T. H., Lindroth R. L., Press M. C., Symrnioudis I., Watt A. D. and Whittaker J. B. (2002) Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology 8, 1–16.

    Article  Google Scholar 

  • Baly J. S. (1878) Descriptions of the phytophagous Coleoptera collected by the late Dr. F. Stoliczka during Forsyth’s Expedition to Kashgar in 1873–1874. Cistula Entomologica 2, 369–383.

    Google Scholar 

  • Barbehenn R. V. (2002) Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology 28, 1329–1347.

    Article  CAS  Google Scholar 

  • Beenen R. (1998) Galerucella placida a proper species from south east Asia (Coleoptera: Chrysomelidae: Galerucinae). Serangga 3, 107–110.

    Google Scholar 

  • Board P. G. and Menon D. (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et Biophysica Acta 1830, 3267–3288.

    Article  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.

    Article  CAS  Google Scholar 

  • Celino F. T., Yamaguchi S., Miura C., Ohta T., Tozawa Y., Iwai T. and Miura T. (2011) Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase. PLoS ONE 6, e16938.

    Article  CAS  Google Scholar 

  • Claravon-Mathews M., Summers C. B. and Felton G. W. (1997) Ascorbate peroxidase: A novel antioxidant enzyme in insects. Archives of Insect Biochemistry and Physiology 34, 57–68.

    Article  Google Scholar 

  • Del Rio D., Stewart A. J. and Pellegrini N. (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases 15, 316–328.

    Article  Google Scholar 

  • Ding J., Fu W., Reardon R., Wu Y. and Zhang G. (2004) Exploratory survey in China for potential insect biocontrol agents of mile-a-minute weed, Polygonum perfoliatum L., in Eastern USA. Biological Control 30, 487–495.

    Article  Google Scholar 

  • Dubovskiy I. M., Martemyanov V. V., Vorontsova Y. L., Rantala M. J., Gryzanova E. V. and Glupov V. V. (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148, 1–5.

    CAS  Google Scholar 

  • Felton G. W. and Summers C. B. (1995) Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology 29, 187–197.

    Article  CAS  Google Scholar 

  • Giannopolitis C. N. and Ries S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology 59, 309–314.

    Article  CAS  Google Scholar 

  • Habig W. H., Pabst M. J. and Jakoby W. B. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  • Heath R. L. and Packer L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198.

    Article  CAS  Google Scholar 

  • Hnatiuk R. J. (1990) Census of Australian Vascular Plants. Australian Flora and Fauna Series Number 11. Australian Government Publishing Service, Canberra. 650 pp.

    Google Scholar 

  • Howe G. A. and Schilmiller A. L. (2002) Oxylipin metabolism in response to stress. Current Opinion in Plant Biology 5, 230–236.

    Article  CAS  Google Scholar 

  • Jena K., Kar P. K., Kausar Z. and Babu C. S. (2013) Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. Journal of Thermal Biology 38, 199–204.

    Article  CAS  Google Scholar 

  • Jia F. X., Dou W., Hu F. and Wang J. J. (2011) Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist 94, 956–963.

    Article  CAS  Google Scholar 

  • Kar M. and Mishra D. (1976) Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57, 315–319.

    Article  CAS  Google Scholar 

  • Kimoto S. (1989) Chrysomelidae (Coleoptera) of Thailand, Cambodia, Laos and Vietnam. IV. Galerucinae. Esakia 27, 1–241.

    Google Scholar 

  • Korayem A. M., Khodairy M. M., Abdel-Aal A. A. and El-Sonbaty A. A. M. (2012) The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. Journal of Biology and Earth Sciences 2, B93–B109.

    CAS  Google Scholar 

  • Le Bras S. and Echaubard M. (1977) Variations quantitatives des proteines dans les tissus de la mouche domestique (Musca domestica L.) au cours de la vie imaginale, l. Apres intoxication par l’Hempa. Bulletin la Société Zoologique de France 102, 95–106.

    Google Scholar 

  • Lijun L., Xuemei L., Yaping G. and Enbo M. (2005) Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera: Acridoidae). Environmental Toxicology and Pharmacology 20, 412–416.

    Article  Google Scholar 

  • Lopez-Martinez G., Elnitsky M. A., Benoit J. B., Lee Jr R. E. and Denlinger D. L. (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology 38, 796–804.

    Article  CAS  Google Scholar 

  • MacNevin W. M. and Urone P. F. (1953) Separation of hydrogen peroxide from organic hydroperoxides. Analytical Chemistry 25, 1760–1761.

    Article  CAS  Google Scholar 

  • Maehly A. C. and Chance B. (1954) The assay of catalases and peroxidases, pp. 357–424. In Methods of Biochemical Analysis (edited by D. Glick). Interscience, New York.

    Google Scholar 

  • Mai V. C., Tran N. T. and Nguyen D. S. (2016) The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Arthropod-Plant Interactions 10, 283–292.

    Article  Google Scholar 

  • Malik U. and Barik A. (2015) Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Science and Technology 25, 593–607.

    Article  Google Scholar 

  • Malik U., Das S. and Barik A. (2016a) Biology of Galerucella placida Baly (Coleoptera: Chrysomelidae) on the ricefield weed Polygonum orientale L. (Polygonaceae). Proceedings of the Zoological Society. doi.10.1007/s12595-016-0203-x.

    Google Scholar 

  • Malik U., Karmakar A. and Barik A. (2016b) Attraction of the potential biocontrol agent GaleruceUa placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26, 45–58.

    Article  CAS  Google Scholar 

  • Malik U., Mitra S. and Barik A. (2017) Attraction of the biocontrol agent, Galerucella placida Baly (Coleoptera: Chrysomelidae) to the leaf surface alkanes of the weed, Polygonum orientale L. Allelopathy Journal 40, 103–116.

    Article  Google Scholar 

  • Marutani-Hert M., Hunter W. B. and Hall D. G. (2010) Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist 93, 519–525.

    Article  CAS  Google Scholar 

  • Maulik S. (1936) The Fauna of British India, Including Ceylon and Burma. Coleoptera. Chrysomelidae (Galerucinae). Taylor and Francis, London. 648 pp.

    Google Scholar 

  • Meng J. Y., Zhang C. Y., Zhu F., Wang X. P. and Lei C. L. (2009) Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. Journal of Insect Physiology 55, 588–592.

    Article  CAS  Google Scholar 

  • Monteiro D. A., de Almeida J. A., Rantin F. T. and Kalinin A. L. (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 143, 141–149.

    Article  Google Scholar 

  • Nabizadeh P. and Kumar T. S. J. (2011) Fat body catalase activity as a biochemical index for the recognition of thermotolerant breeds of mulberry silkworm, Bombyx mori L. Journal of Thermal Biology 36, 1–6.

    Article  CAS  Google Scholar 

  • Nakano Y. and Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22, 867–880.

    CAS  Google Scholar 

  • Paital B., Panda S. K., Hati A. K., Mohanty B., Mohapatra M. K., Kanungo S. and Chainy G. B. N. (2016) Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World Journal of Biological Chemistry 7, 110–127.

    Article  Google Scholar 

  • Reid C. A. M. (2001) Galerucella placida Baly in Australia (Coleoptera: Chrysomelidae: Galerucinae). Australian Journal of Entomology 40, 331–334.

    Article  Google Scholar 

  • Sarkar N. and Barik A. (2017) Effect of temperature on development and reproduction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). Proceedings of the Zoological Society 70, 150–155.

    Article  Google Scholar 

  • Snell F. D. and Snell C. T. (1971) Colorimetric Methods of Analysis. Van Nostrand Reinhold Co., New York. 622 pp.

    Google Scholar 

  • Sohal R. S., Arnold L. and Orr W. C. (1990) Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mechanisms of Ageing and Development 56, 223–235.

    Article  CAS  Google Scholar 

  • Storey K. B. and Storey J. M. (2010) Oxygen: Stress and adaptation in cold-hardy insects, pp. 141–165. In Low Temperature Biology of Insects (edited by D. L. Denlinger and R. E. Lee Jr). Cambridge University Press, New York.

    Chapter  Google Scholar 

  • Wang Y., Oberley L. W. and Murhammer D. W. (2001) Antioxidant defense systems of two lepidopteran insect cell lines. Free Radical Biology and Medicine 30, 1254–1262.

    Article  CAS  Google Scholar 

  • Yang L. H., Huang H. and Wang J. J. (2010) Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. Journal of Insect Physiology 56, 1871–1876.

    Article  CAS  Google Scholar 

  • Zar J. H. (1999) Biostatistical Analysis. Prentice Hall, New Jersey. 929 pp.

    Google Scholar 

  • Zhang G. H., Liu H., Wang J. J. and Wang Z. Y. (2014) Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the predatory mite, Neoseiulus cucumeris (Acari: Phytoseiidae). Experimental and Applied Acarology 64, 73–85.

    Article  CAS  Google Scholar 

  • Zhang S., Fu W., Li N., Zhang F. and Liu T. X. (2015) Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. Journal of Insect Physiology 73, 47–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandamay Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Malik, U. & Barik, A. Effect of thermal stress on antioxidant responses of the biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae). Int J Trop Insect Sci 38, 400–409 (2018). https://doi.org/10.1017/S1742758418000218

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758418000218

Key words

Navigation