Aldridge W. N. (1953) Serum esterases. 1. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochemical Journal 53, 110–117.
CAS
Article
Google Scholar
Alvarez L. C., Ponce G., Oviedo M., Lopez B. and Flores A. E. (2013) Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela. Journal of Medical Entomology 50, 1031–1039.
CAS
Article
Google Scholar
Anonymous (2010) IRAC: Prevention and management of insecticide resistance in vectors of public health importance. Insecticide Resistance Action Committee 2, 72–143.
Google Scholar
Avise J. C. and McDonald J. F. (1976) Enzyme changes during development of holo- and hemi-metabolic insects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 53, 393–397.
CAS
Article
Google Scholar
Bouvier J. C., Boivin T., Beslay D. and Sauphanor B. (2002) Age-dependent response to insecticides and enzyme variation in susceptible and resistant codling moth larvae. Archives of Insect Biochemistry and Physiology 51, 55–66.
CAS
Article
Google Scholar
Brady J. P. and Richmond R. C. (1990) Molecular analysis of evolutionary changes in the expression of Drosophila esterases. Proceedings of the National Academy of Sciences of the United States of America 87, 8217–8221.
CAS
Article
Google Scholar
Chouaïbou M., Etang J., Brévault T., Nwane P., Hinzoumbé C. K., Mimpfoundi R. and Simard F. (2008) Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Tropical Medicine & International Health 13, 476–486.
Article
Google Scholar
Davidson G. (1957) Insecticide resistance in Anopheles sundaicus. Nature 180, 1333–1335.
CAS
Article
Google Scholar
de Carvalho V. M., Marques R. M., Lapenta A. S. and Machado M. F. P. S. (2003) Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genetics and Molecular Biology 26, 195–198.
Article
Google Scholar
de Kort C. A. D. and Granger N. A. (1981) Regulation of the juvenile hormone titer. Annual Review of Entomology 26, 1–28.
Article
Google Scholar
Diabate A., Baldet T., Chandre F., Akoobeto M., Guiguemdé T. R., Darriet F., Brengues C., Guillet P., Hemingway J., Small G. J. and Hougard J. M. (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.1. in Burkina Faso. American Journal of Tropical Medicine and Hygiene 67, 617–622.
CAS
Article
Google Scholar
dos Santos J. M., Contel E. P. and Kerr W. E. (1985) Biology of amazonian mosquitoes. III. Esterase isozymes in Anopheles darlingi. Acta Amazonia 15, 167–178.
Article
Google Scholar
Dusfour I., Zorrilla P., Guidez A., Issaly J., Girod R., Guillaumot L., Robello C. and Strode C. (2015) Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide. PLOS Neglected Tropical Diseases 9(11), e0004226.
Google Scholar
Forattini O. P., Kakitani I., Massad E. and Marucci D. (1993) Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 4–Survey of resting adults and synanthropic behaviour in south-eastern Brazil. Revista de Saúde Pública, São Paulo 27, 398–411.
CAS
Article
Google Scholar
Fournier D., Mutero A., Pralavorio M. and Bride J.-M. (1993) Drosophila acetylcholinesterase: Mechanisms of resistance to organophosphates. Chemico-Biological Interactions 87, 233–238.
CAS
Article
Google Scholar
Georghiou G. P., Pasteur N. and Hawley M. K. (1980) Linkage relationship between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. Journal of Economic Entomology 73, 301–305.
CAS
Article
Google Scholar
Hemingway J. (1982) The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pesticide Biochemistry and Physiology 17, 149–155.
CAS
Article
Google Scholar
Hemingway J. (1983) Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 477–480.
CAS
Article
Google Scholar
Hemingway J. and Karunaratne S. H. P. P. (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12, 1–12.
CAS
Article
Google Scholar
Hemingway J., Field L. and Vontas J. (2002) An overview of insecticide resistance. Science 298, 96–97.
CAS
Article
Google Scholar
Heymann E. and Jakoby W. B. (1980) Carboxylesterases and amidases, pp. 291–323. In Enzymatic Basis of Detoxification Vol. 2 (edited by W. B. Jakoby). Academic Press, New York.
Chapter
Google Scholar
Johnson F. M., Kanapi C. G., Richardson R. H., Wheeler M. R. and Stone W. S. (1966) An operational classific-ation of Drosophila esterases for species comparison. University of Texas Publishing 6615, 517–532.
Google Scholar
Jones B. R. and Brancoft H. R. (1986) Distribution and probable physiological role of esterases in reprodutive, digestive, and fat-body tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Biochemical Genetics 24, 499–508.
CAS
Article
Google Scholar
Kamita S. G. and Hammock B. D. (2010) Juvenile hormone esterase: biochemistry and structure. Journal of Pesticide Science 35, 265–274.
CAS
Article
Google Scholar
Kamita S. G., Hinton A. C., Wheelock C. E., Wogulis M. D., Wilson D. K., Wolf N. M., Stok J. E., Hock B. and Hammock B. D. (2003) Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochemistry and Molecular Biology 33, 1261–1273.
CAS
Article
Google Scholar
Kapin M. A. and Ahmad S. (1980) Esterases in larval tissues of gypsy moth, Lymantria dispar (L): Optimum assay conditions, quantification and characterization. Insect Biochemistry 10, 331–337.
CAS
Article
Google Scholar
Karlekar S. R., Deshpande M. M. and Andrew R. J. (2013) Present susceptibility status of Culex quinquefasciatus Say to three insecticides in Nagpur District of India. Indian Journal of Scientific Research and Technology 1, 12–14.
Google Scholar
Karunaratne S. H. P. P. and Hemingway J. (1996) Different insecticides select multiple carboxylesterase isozymes and different resistance levels from a single population of Culex quinquefasciatus. Pesticide Biochemistry and Physiology 54, 4–11.
CAS
Article
Google Scholar
Karunaratne S. H. P. P. and Hemingway J. (2001) Mala-thion resistance and prevalence of the malathon carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bulletin of the World Health Organization: the International Journal of Public Health 79(11), 1060–1064.
CAS
PubMed
Google Scholar
Khambay B. P. S. and Jewess P. J.(2010) Pyrethroids, pp. 1–29. In Insect Control: Biological and Synthetic Agents, 2nd edn (edited by L. I. Gilbert and S. S. Gill). Academic Press, London.
Google Scholar
Koutsos A. C., Blass C., Meister S., Schmidt S., MacCallum R. M., Soares M. B., Collins F. H., Benes V., Zdobnov E., Kafatos F. C. and Christophides G. K. (2007) Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfy Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 104, 11304–11309.
CAS
Article
Google Scholar
Li C.-X., Guo X.-X., Zhang Y.-M., Dong Y.-D., Xing D., Yan T., Wang G., Zhang H.-D. and Zhao T.-Y. (2016) Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae). Acta Tropica 157, 84–95.
CAS
Article
Google Scholar
Lima-Catelani A. R. A., Ceron C. R. and Bicudo H. E. M. C. (2004) Variation of genetic expression during development, revealed by esterase patterns in Aedes aegypti (Diptera: Culicidae). Biochemical Genetics 42, 69–84.
Article
Google Scholar
Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.
CAS
PubMed
Google Scholar
Mane S. D., Tompkins L. and Richmond R. C. (1983) Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster females. Science 222, 419–421.
CAS
Article
Google Scholar
Montella I. R., Schama R. and Valle D. (2012) The classification of esterases: an important gene family involved in insecticide resistance—A review. Memórias do Instituto Oswaldo Cruz 107, 437–449.
CAS
Article
Google Scholar
Motoyama M. and Dauterman C. (1974) Role of nonox-idative metabolism in organophosphorous resistance. Journal of Agricultural and Food Chemistry 22, 350–356.
CAS
Article
Google Scholar
Peiris H. T. R. and Hemingway J. (1993) Characterisation and inheritance of elevated esterases in organo-phosphorus and carbamate insecticide resistant Culex quinquefasciatus (Diptera: Culicidae) from Sri Lanka. Bulletin of Entomological Research 83, 127–132.
CAS
Article
Google Scholar
Perez-Mendoza J., Fabrick J. A., Zhu K. Y. and Baker J. E. (2000) Alterations in esterases are associated with malathion resistance in Habrobracon hebetor (Hymen-optera: Braconidae). Journal of Economic Entomology 93, 31–37.
CAS
Article
Google Scholar
Ramaiah K. D., Das P. K., Michael E. and Guyatt H. L. (2000) The economic burden of lymphatic flariasis in India. Parasitology Today 16, 251–253.
CAS
Article
Google Scholar
Raymond M., Callaghan A., Fort P. and Pasteur N. (1991) World-wide migration of amplifed insecticide resistance genes in mosquitoes. Nature 350, 151–153.
CAS
Article
Google Scholar
Raymond M., Chevillon C., Guillemaud T., Lenormand T. and Pasteur N. (1998) An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philosophical Transactions of the Royal Society B: Biological Sciences 353, 1707–1711.
CAS
Article
Google Scholar
Raymond M., Fournier D., Bride J. M., Cuany A., Berge J., Magnin M. and Pasteur N. (1986) Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: Insensitive acet-ylcholinesterase and detoxifying oxidases. Journal of Economic Entomology 79, 1452–1458.
CAS
Article
Google Scholar
Richmond R. C., Gilbert D. G., Sheehan K. B., Gromko M. H. and Butterworth F. M. (1980) Esterase 6 and reproduction in Drosophila melanogaster. Science 207, 1483–1485.
CAS
Article
Google Scholar
Rodríguez M. M., Bisset J. A., Armas Y. D. and Ramos F. (2005) Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. Journal of the American Mosquito Control Association 21, 437–445.
Article
Google Scholar
Saavedra-Rodriguez K., Strode C., Flores A. E., Garcia-Luna S., Reyes-Solis G., Ranson H., Hemingway J. and Black W. C. IV (2014) Differential transcription profles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology 23, 199–215.
CAS
Article
Google Scholar
Sabesan S., Vanamail P., Raju K. H. K. and Jambulingam P. (2010) Lymphatic flariasis in India: Epidemiology and control measures. Journal of Postgraduate Medicine 56, 232–238.
Article
Google Scholar
Scott J. G. (1999) Cytochromes P450 and insecticide resistance. Insecticide Biochemistry and Molecular Biology 29, 757–777.
CAS
Article
Google Scholar
Shanmugavelu M., Baytan A. R., Chesnut J. D. and Bonning B. C. (2000) A novel protein that binds juvenile hormone esterase in fat body tissue and pericardial cells of the tobacco hornworm Manduca sexta L. Journal of Biological Chemistry 275, 1802–1806.
CAS
Article
Google Scholar
Siegfried B. D. and Ono M. (1993) Mechanisms of para-thion resistance in the greenbug Schizaphis graminum (Rondani). Pesticide Biochemistry and Physiology 45, 24–33.
CAS
Article
Google Scholar
Sirivanakarn S. (1976) Medical Entomology studies-III. A revision of the subgenus Culex in the Oriental region (Diptera: Culicidae). Contributions of the American Entomological Institute 12 (2), 1–272.
Google Scholar
Steiner W. W. M. and Johnson W. E. (1973) Techniques for electrophoresis of Hawaiian Drosophila. Island Ecosystems IRP, U.S. International Biological Program, Honolulu (HI). International Biological Program Technical Report 30. 21 pages.
Google Scholar
van Asperen K. (1962) A study of housefy esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8, 401–414, IN3, 415–416.
CAS
Article
Google Scholar
Vedbrat S. S. and Whitt G. S. (1975) Isozyme ontogeny of the mosquito. Anopheles albimanus. Isozymes: Developmental Biology 3, 131–143.
Article
Google Scholar
WHO [World Health Organization, Division of Vector Biology and Control] (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization, Geneva. https://doi.org/www.who.int/iris/handle/10665/69615.
Google Scholar
WHO [World Health Organization] (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO/ CDS/NTD/WHOPES/ GCDPP/3. World Health Organization, Geneva, Switzerland. Available at: https://doi.org/apps.who.int/iris/bitstream/handle/10665/69296/WHO_CDS_NTD_WHOPES_GCDPP_2006. 3_eng.pdf?sequence=1.
Google Scholar
Yadouleton A. W. M., Asidi A., Djouaka R. F., Braïma J., Agossou C. D. and Akogbeto M. C. (2009) Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malaria Journal 8, 103.
Yadouleton A., Martin T., Padonou G., Chandre F., Asidi A., Djogbenou L., Dabiré R., Aïkpon R., Boko M., Glitho I. and Akogbeto M. (2011) Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasites & Vectors 4, 60.
Article
Google Scholar
Yang W.-J., Xu K.-K., Shang F., Dou W. and Wang J.-J. (2016) Identification and characterization of three juvenile hormone genes from Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist 99, 648–657.
CAS
Article
Google Scholar