Skip to main content

Differential expression of carboxylesterases in larva and adult of Culex quinquefasciatus Say (Diptera: Culicidae) from sub-Himalayan West Bengal, India

Abstract

Culex quinquefasciatus Say, a widely distributed mosquito in tropical and subtropical areas, is the most important vector of the filarial parasite Wuchereria bancrofti, the causative agent of lymphatic filariasis. In India, filariasis is endemic in 17 States and six Union Territories, putting about 553 million people at risk of infection. Vector control, which aims to prevent pathogen transmission through interventions targeting adult mosquito vectors, is a significant component of control of the disease. Chemicalbased control represents a chief strategy in the management of mosquito vectors; however, continuous application of insecticides has led to the development of resistance in many mosquito vectors around the world. The current study aims to observe the variability of expression of carboxylesterase isozymes that play a role in detoxifying insecticides into non-toxic compounds, in different life stages of Culex mosquitoes, to understand levels of insecticide susceptibility that may be used in integrated mosquito management for efficient vector control. C. quinquefasciatus were collected from different localities of sub- Himalayan West Bengal, India, and adult and larval bioassays were performed against one organophosphate insecticide (chlorpyrifos) and two synthetic pyrethroid insecticides (deltamethrin and lambda-cyhalothrin). The activity of α- and β-carboxylesterases (quantitative assay) were measured in larvae and adults of C. quinquefasciatus using a microplate assay, and measured qualitative expression by native polyacrylamide gel electrophoresis. The study shows a differential activity of α- and β-carboxylesterases both in quantitative and qualitative assays. The quantitative assay reveals that larvae exhibit a 12.2-fold higher level activity of α-carboxylesterase and about 5.0-fold higher level of activity of β-carboxylesterase than adults. Some carboxylesterase isozymes, i.e., α-Est I-IV, α-Est VII and α-Est XI-XV were exclusively expressed in larvae, whereas α-Est V-VI and α-Est IX were expressed only in adults. In larvae, all β-Est I-IX were expressed, while in adults only β-Est IV-V was expressed. The results of adult and larval insecticide bioassay are also as per the above findings showing an LC90 value of 0.017 ppm, 0.097 ppm and 0.072 ppm in the larva, and LC90 value of 0.0015 ppm, 0.721 ppm, 0.364 ppm in adults against chlorpyrifos, deltamethrin and lambda-cyhalothrin, respectively.

This is a preview of subscription content, access via your institution.

References

  • Aldridge W. N. (1953) Serum esterases. 1. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochemical Journal 53, 110–117.

    CAS  Article  Google Scholar 

  • Alvarez L. C., Ponce G., Oviedo M., Lopez B. and Flores A. E. (2013) Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela. Journal of Medical Entomology 50, 1031–1039.

    CAS  Article  Google Scholar 

  • Anonymous (2010) IRAC: Prevention and management of insecticide resistance in vectors of public health importance. Insecticide Resistance Action Committee 2, 72–143.

    Google Scholar 

  • Avise J. C. and McDonald J. F. (1976) Enzyme changes during development of holo- and hemi-metabolic insects. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 53, 393–397.

    CAS  Article  Google Scholar 

  • Bouvier J. C., Boivin T., Beslay D. and Sauphanor B. (2002) Age-dependent response to insecticides and enzyme variation in susceptible and resistant codling moth larvae. Archives of Insect Biochemistry and Physiology 51, 55–66.

    CAS  Article  Google Scholar 

  • Brady J. P. and Richmond R. C. (1990) Molecular analysis of evolutionary changes in the expression of Drosophila esterases. Proceedings of the National Academy of Sciences of the United States of America 87, 8217–8221.

    CAS  Article  Google Scholar 

  • Chouaïbou M., Etang J., Brévault T., Nwane P., Hinzoumbé C. K., Mimpfoundi R. and Simard F. (2008) Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Tropical Medicine & International Health 13, 476–486.

    Article  Google Scholar 

  • Davidson G. (1957) Insecticide resistance in Anopheles sundaicus. Nature 180, 1333–1335.

    CAS  Article  Google Scholar 

  • de Carvalho V. M., Marques R. M., Lapenta A. S. and Machado M. F. P. S. (2003) Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genetics and Molecular Biology 26, 195–198.

    Article  Google Scholar 

  • de Kort C. A. D. and Granger N. A. (1981) Regulation of the juvenile hormone titer. Annual Review of Entomology 26, 1–28.

    Article  Google Scholar 

  • Diabate A., Baldet T., Chandre F., Akoobeto M., Guiguemdé T. R., Darriet F., Brengues C., Guillet P., Hemingway J., Small G. J. and Hougard J. M. (2002) The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.1. in Burkina Faso. American Journal of Tropical Medicine and Hygiene 67, 617–622.

    CAS  Article  Google Scholar 

  • dos Santos J. M., Contel E. P. and Kerr W. E. (1985) Biology of amazonian mosquitoes. III. Esterase isozymes in Anopheles darlingi. Acta Amazonia 15, 167–178.

    Article  Google Scholar 

  • Dusfour I., Zorrilla P., Guidez A., Issaly J., Girod R., Guillaumot L., Robello C. and Strode C. (2015) Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide. PLOS Neglected Tropical Diseases 9(11), e0004226.

    Google Scholar 

  • Forattini O. P., Kakitani I., Massad E. and Marucci D. (1993) Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 4–Survey of resting adults and synanthropic behaviour in south-eastern Brazil. Revista de Saúde Pública, São Paulo 27, 398–411.

    CAS  Article  Google Scholar 

  • Fournier D., Mutero A., Pralavorio M. and Bride J.-M. (1993) Drosophila acetylcholinesterase: Mechanisms of resistance to organophosphates. Chemico-Biological Interactions 87, 233–238.

    CAS  Article  Google Scholar 

  • Georghiou G. P., Pasteur N. and Hawley M. K. (1980) Linkage relationship between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. Journal of Economic Entomology 73, 301–305.

    CAS  Article  Google Scholar 

  • Hemingway J. (1982) The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pesticide Biochemistry and Physiology 17, 149–155.

    CAS  Article  Google Scholar 

  • Hemingway J. (1983) Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 477–480.

    CAS  Article  Google Scholar 

  • Hemingway J. and Karunaratne S. H. P. P. (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12, 1–12.

    CAS  Article  Google Scholar 

  • Hemingway J., Field L. and Vontas J. (2002) An overview of insecticide resistance. Science 298, 96–97.

    CAS  Article  Google Scholar 

  • Heymann E. and Jakoby W. B. (1980) Carboxylesterases and amidases, pp. 291–323. In Enzymatic Basis of Detoxification Vol. 2 (edited by W. B. Jakoby). Academic Press, New York.

    Chapter  Google Scholar 

  • Johnson F. M., Kanapi C. G., Richardson R. H., Wheeler M. R. and Stone W. S. (1966) An operational classific-ation of Drosophila esterases for species comparison. University of Texas Publishing 6615, 517–532.

    Google Scholar 

  • Jones B. R. and Brancoft H. R. (1986) Distribution and probable physiological role of esterases in reprodutive, digestive, and fat-body tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Biochemical Genetics 24, 499–508.

    CAS  Article  Google Scholar 

  • Kamita S. G. and Hammock B. D. (2010) Juvenile hormone esterase: biochemistry and structure. Journal of Pesticide Science 35, 265–274.

    CAS  Article  Google Scholar 

  • Kamita S. G., Hinton A. C., Wheelock C. E., Wogulis M. D., Wilson D. K., Wolf N. M., Stok J. E., Hock B. and Hammock B. D. (2003) Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochemistry and Molecular Biology 33, 1261–1273.

    CAS  Article  Google Scholar 

  • Kapin M. A. and Ahmad S. (1980) Esterases in larval tissues of gypsy moth, Lymantria dispar (L): Optimum assay conditions, quantification and characterization. Insect Biochemistry 10, 331–337.

    CAS  Article  Google Scholar 

  • Karlekar S. R., Deshpande M. M. and Andrew R. J. (2013) Present susceptibility status of Culex quinquefasciatus Say to three insecticides in Nagpur District of India. Indian Journal of Scientific Research and Technology 1, 12–14.

    Google Scholar 

  • Karunaratne S. H. P. P. and Hemingway J. (1996) Different insecticides select multiple carboxylesterase isozymes and different resistance levels from a single population of Culex quinquefasciatus. Pesticide Biochemistry and Physiology 54, 4–11.

    CAS  Article  Google Scholar 

  • Karunaratne S. H. P. P. and Hemingway J. (2001) Mala-thion resistance and prevalence of the malathon carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bulletin of the World Health Organization: the International Journal of Public Health 79(11), 1060–1064.

    CAS  PubMed  Google Scholar 

  • Khambay B. P. S. and Jewess P. J.(2010) Pyrethroids, pp. 1–29. In Insect Control: Biological and Synthetic Agents, 2nd edn (edited by L. I. Gilbert and S. S. Gill). Academic Press, London.

    Google Scholar 

  • Koutsos A. C., Blass C., Meister S., Schmidt S., MacCallum R. M., Soares M. B., Collins F. H., Benes V., Zdobnov E., Kafatos F. C. and Christophides G. K. (2007) Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfy Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 104, 11304–11309.

    CAS  Article  Google Scholar 

  • Li C.-X., Guo X.-X., Zhang Y.-M., Dong Y.-D., Xing D., Yan T., Wang G., Zhang H.-D. and Zhao T.-Y. (2016) Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae). Acta Tropica 157, 84–95.

    CAS  Article  Google Scholar 

  • Lima-Catelani A. R. A., Ceron C. R. and Bicudo H. E. M. C. (2004) Variation of genetic expression during development, revealed by esterase patterns in Aedes aegypti (Diptera: Culicidae). Biochemical Genetics 42, 69–84.

    Article  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Mane S. D., Tompkins L. and Richmond R. C. (1983) Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster females. Science 222, 419–421.

    CAS  Article  Google Scholar 

  • Montella I. R., Schama R. and Valle D. (2012) The classification of esterases: an important gene family involved in insecticide resistance—A review. Memórias do Instituto Oswaldo Cruz 107, 437–449.

    CAS  Article  Google Scholar 

  • Motoyama M. and Dauterman C. (1974) Role of nonox-idative metabolism in organophosphorous resistance. Journal of Agricultural and Food Chemistry 22, 350–356.

    CAS  Article  Google Scholar 

  • Peiris H. T. R. and Hemingway J. (1993) Characterisation and inheritance of elevated esterases in organo-phosphorus and carbamate insecticide resistant Culex quinquefasciatus (Diptera: Culicidae) from Sri Lanka. Bulletin of Entomological Research 83, 127–132.

    CAS  Article  Google Scholar 

  • Perez-Mendoza J., Fabrick J. A., Zhu K. Y. and Baker J. E. (2000) Alterations in esterases are associated with malathion resistance in Habrobracon hebetor (Hymen-optera: Braconidae). Journal of Economic Entomology 93, 31–37.

    CAS  Article  Google Scholar 

  • Ramaiah K. D., Das P. K., Michael E. and Guyatt H. L. (2000) The economic burden of lymphatic flariasis in India. Parasitology Today 16, 251–253.

    CAS  Article  Google Scholar 

  • Raymond M., Callaghan A., Fort P. and Pasteur N. (1991) World-wide migration of amplifed insecticide resistance genes in mosquitoes. Nature 350, 151–153.

    CAS  Article  Google Scholar 

  • Raymond M., Chevillon C., Guillemaud T., Lenormand T. and Pasteur N. (1998) An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philosophical Transactions of the Royal Society B: Biological Sciences 353, 1707–1711.

    CAS  Article  Google Scholar 

  • Raymond M., Fournier D., Bride J. M., Cuany A., Berge J., Magnin M. and Pasteur N. (1986) Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: Insensitive acet-ylcholinesterase and detoxifying oxidases. Journal of Economic Entomology 79, 1452–1458.

    CAS  Article  Google Scholar 

  • Richmond R. C., Gilbert D. G., Sheehan K. B., Gromko M. H. and Butterworth F. M. (1980) Esterase 6 and reproduction in Drosophila melanogaster. Science 207, 1483–1485.

    CAS  Article  Google Scholar 

  • Rodríguez M. M., Bisset J. A., Armas Y. D. and Ramos F. (2005) Pyrethroid insecticide-resistant strain of Aedes aegypti from Cuba induced by deltamethrin selection. Journal of the American Mosquito Control Association 21, 437–445.

    Article  Google Scholar 

  • Saavedra-Rodriguez K., Strode C., Flores A. E., Garcia-Luna S., Reyes-Solis G., Ranson H., Hemingway J. and Black W. C. IV (2014) Differential transcription profles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology 23, 199–215.

    CAS  Article  Google Scholar 

  • Sabesan S., Vanamail P., Raju K. H. K. and Jambulingam P. (2010) Lymphatic flariasis in India: Epidemiology and control measures. Journal of Postgraduate Medicine 56, 232–238.

    Article  Google Scholar 

  • Scott J. G. (1999) Cytochromes P450 and insecticide resistance. Insecticide Biochemistry and Molecular Biology 29, 757–777.

    CAS  Article  Google Scholar 

  • Shanmugavelu M., Baytan A. R., Chesnut J. D. and Bonning B. C. (2000) A novel protein that binds juvenile hormone esterase in fat body tissue and pericardial cells of the tobacco hornworm Manduca sexta L. Journal of Biological Chemistry 275, 1802–1806.

    CAS  Article  Google Scholar 

  • Siegfried B. D. and Ono M. (1993) Mechanisms of para-thion resistance in the greenbug Schizaphis graminum (Rondani). Pesticide Biochemistry and Physiology 45, 24–33.

    CAS  Article  Google Scholar 

  • Sirivanakarn S. (1976) Medical Entomology studies-III. A revision of the subgenus Culex in the Oriental region (Diptera: Culicidae). Contributions of the American Entomological Institute 12 (2), 1–272.

    Google Scholar 

  • Steiner W. W. M. and Johnson W. E. (1973) Techniques for electrophoresis of Hawaiian Drosophila. Island Ecosystems IRP, U.S. International Biological Program, Honolulu (HI). International Biological Program Technical Report 30. 21 pages.

    Google Scholar 

  • van Asperen K. (1962) A study of housefy esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8, 401–414, IN3, 415–416.

    CAS  Article  Google Scholar 

  • Vedbrat S. S. and Whitt G. S. (1975) Isozyme ontogeny of the mosquito. Anopheles albimanus. Isozymes: Developmental Biology 3, 131–143.

    Article  Google Scholar 

  • WHO [World Health Organization, Division of Vector Biology and Control] (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization, Geneva. https://doi.org/www.who.int/iris/handle/10665/69615.

    Google Scholar 

  • WHO [World Health Organization] (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO/ CDS/NTD/WHOPES/ GCDPP/3. World Health Organization, Geneva, Switzerland. Available at: https://doi.org/apps.who.int/iris/bitstream/handle/10665/69296/WHO_CDS_NTD_WHOPES_GCDPP_2006. 3_eng.pdf?sequence=1.

    Google Scholar 

  • Yadouleton A. W. M., Asidi A., Djouaka R. F., Braïma J., Agossou C. D. and Akogbeto M. C. (2009) Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. Malaria Journal 8, 103.

  • Yadouleton A., Martin T., Padonou G., Chandre F., Asidi A., Djogbenou L., Dabiré R., Aïkpon R., Boko M., Glitho I. and Akogbeto M. (2011) Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasites & Vectors 4, 60.

    Article  Google Scholar 

  • Yang W.-J., Xu K.-K., Shang F., Dou W. and Wang J.-J. (2016) Identification and characterization of three juvenile hormone genes from Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist 99, 648–657.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Saha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bharati, M., Saha, D. Differential expression of carboxylesterases in larva and adult of Culex quinquefasciatus Say (Diptera: Culicidae) from sub-Himalayan West Bengal, India. Int J Trop Insect Sci 38, 303–312 (2018). https://doi.org/10.1017/S1742758418000139

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758418000139

Key words

  • Culex quinquefasciatus
  • carboxylesterases
  • insecticide resistance
  • differential expression
  • larvae
  • detoxifying enzymes’
  • activity