Skip to main content
Log in

The fine-scale genetic structure of the malaria vectors Anopheles funestus and Anopheles gambiae (Diptera: Culicidae) in the north-eastern part of Tanzania

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Understanding the impact of altitude and ecological heterogeneity at a fine scale on the populations of malaria vectors is essential to better understand and anticipate eventual epidemiological changes. It could help to evaluate the spread of alleles conferring resistance to insecticides and also determine any increased entomological risk of transmission in highlands due to global warming. We used microsatellite markers to measure the effect of altitude and distance on the population genetic structure of Anopheles funestus and Anopheles gambiae s.s. in the Muheza area in the north-eastern part of Tanzania (seven loci for each species). Our analysis reveals strong gene fow between the different populations of An. funestus from lowland and highland areas, as well as between populations of An. gambiae sampled in the lowland area. These results highlight for An. funestus the absence of a significant spatial subpopulation structuring at small-scale, despite a steep ecological and altitudinal cline. Our findings are important in the understanding of the possible spread of alleles conferring insecticide resistance through mosquito populations. Such information is essential for vector control programmes to avoid the rapid spread and fxation of resistance in mosquito populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alilio M. S., Kitua A., Njunwa K., Medina M., Rønn A.M., Mhina J., Msuya F., Mahundi J., Depinay J. M., Whyte S., Krasnik A. and Bygbjerg I. C. (2004) Malaria control at the district level in Africa: The case of the Muheza District in Northeastern Tanzania. American Journal of Tropical Medicine and Hygiene 71(2 Suppl), 205–213.

    Article  PubMed  Google Scholar 

  • Boëte C. and Joint Malaria Programme, KCMC, Tanzania (2006) Genetically Modifed Mosquitoes for Malaria Control, https://doi.org/www.landesbioscience.com. ISBN: 1-58706-096-5.

    Book  Google Scholar 

  • Chaves L. F., Imanishi N. and Hoshi T. (2015) Population dynamics of Armigeres subalbatus (Diptera: Culicidae) across a temperate altitudinal gradient. Bulletin of Entomological Research 105, 589–597. doi:10.1017/S0007485315000474.

    Article  CAS  PubMed  Google Scholar 

  • Cohuet A., Simard F., Berthomieu A., Raymond M., Fontenille D. and Weill M. (2002) Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus. Molecular Ecology Notes 2, 498–500. doi:10.1046/j.1471-8286.2002.00290.x.

    Article  CAS  Google Scholar 

  • Donnelly M. J., Pinto J., Girod R., Besansky N. J. and Lehmann T. (2004) Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity 92, 61–68. doi:10.1038/sj.hdy.6800377.

    Article  CAS  PubMed  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. (2005) Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffer L., Laval G. and Schneider S. (2005) Arlequin (Version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioin-formatics 1, 47–50.

    Google Scholar 

  • Falush D., Stephens M. and Pritchard J. K. (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies M. T. and Coetzee M. (1987) A Supplement to the Anophelinae of Africa South of Sahara (Afrotropical Region). South African Institute for Medical Research, Johannesburg, South Africa. 143 pp.

    Google Scholar 

  • Gillies M. T. and De Meillon B. (1968) The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). South African Institute for Medical Research, Johannesburg, South Africa. 343 pp.

    Google Scholar 

  • Gorospe K. D. and Karl S. A. (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: Dispersal and colonization in the coral, Pocillopora damicornis. Molecular Ecology 22, 3721–3736. doi:10.1111/mec.12335.

    Article  PubMed  Google Scholar 

  • Gorospe K. D. and Karl S. A. (2015) Depth as an organizing force in Pocillopora damicornis: Intra-reef genetic architecture. PLoS ONE 10, e0122127. doi:10.1371/journal.pone.0122127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudet J. (1995) FSTAT (Version 1.2): Acomputer program to calculate F-Statistics. Journal of Heredity 86, 485–486.

    Article  Google Scholar 

  • Hodkinson I. D. (2005) Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews 80, 489–513. doi:10.1017/S1464793105006767.

    Article  PubMed  Google Scholar 

  • Kamau L., Lehmann T., Hawley W. A., Orago A. S. and Collins F. H. (1998) Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo bay, western Kenya: A comparison with Kilif in coastal Kenya. The American Journal of Tropical Medicine and Hygiene 58, 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Kamugisha M. L., Maxwell C. and Curtis C. F. (2005) Characteristics of malaria among children living in lowlands and highlands of Muheza District, north-east Tanzania. Tanzania Health Research Bulletin 7, 67–72.

    Google Scholar 

  • Koekemoer L. L., Kamau L., Hunt R. H. and Coetzee M. (2002) A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. The American Journal of Tropical Medicine and Hygiene 66, 804–811.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T., Hawley W. A., Kamau L., Fontenille D., Simard F. and Collins F. H. (1996) Genetic differentiation of Anopheles gambiae populations from East and West Africa: Comparison of microsatellite and allozyme loci. Heredity 77, 192–208.

    Article  CAS  PubMed  Google Scholar 

  • Levy S. (2007) Mosquito modifications: New approaches to controlling malaria. BioScience 57, 816–821. doi:10.1641/B571003.

    Article  Google Scholar 

  • Luckhart S., Li K., Dunton R., Lewis E. E., Crampton A. L., Ryan J. R. and Rosenberg R. (2003) Anopheles gambiae immune gene variants associated with natural Plasmodium infection. Molecular and Biochemical Parasitology 128, 83–86. doi:10.1016/S0166-6851(03)00016-1.

    Article  CAS  PubMed  Google Scholar 

  • Magesa S. M., Wilkes T. J., Mnzava A. E., Njunwa K. J., Myamba J., Kivuyo M. D., Hill N., Lines J. D. and Curtis C. F. (1991) Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 2. Effects on the malaria vector population. Acta Tropica 49, 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Maliti D., Ranson H., Magesa S., Kisinza W., Mcha J., Haji K., Killeen G. and Weetman D. (2014) Islands and stepping-stones: Comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS ONE 9(10), e110910. doi:10.1371/journal.pone.0110910.

    Google Scholar 

  • Mboera L. and Magesa S. (2001) The rise and fall of malarial sporozoite rates in Anopheles gambiae s.l. and An. funestus in north-eastern Tanzania, between 1934 and 1999. Annals of Tropical Medicine & Parasitology 95, 325–330.

    Article  CAS  Google Scholar 

  • Michel A. P., Guelbeogo W. M., Grushko O., Schemerhorn B. J., Kern M., Willard M. B., Sagnon N.F., Costantini C. and Besansky N. J. (2005) Molecular differentiation between chromosomally defned incipient species of Anopheles funestus. Insect Molecular Biology 14, 375–387. doi:10.1111/j.1365-2583.2005.00568.x.

    Article  CAS  PubMed  Google Scholar 

  • Midega J. T., Muturi E. J., Baliraine F. N., Mbogo C. M., Githure J., Beier J. C. and Yan G. (2010) Population structure of Anopheles gambiae along the Kenyan coast. Acta Tropica 114, 103–108. doi:10.1016/j.actatropica.2010.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrier X. and Jacquemoud-Collet J. P. (2006) DARwin Software v 5.0. https://doi.org/darwin.cirad.fr/.

    Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranson H., N’guessan R., Lines J., Moiroux N., Nkuni Z. and Corbel V. (2011) Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends in Parasitology 27, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Sinkins S. P., Hackett B. J., Costantini C., Vulule J., Ling Y.-Y., Collins F. H. and Besansky N. J. (2000) Isolation of polymorphic microsatellite loci from the malaria vector Anopheles funestus. Molecular Ecology 9, 490–492. doi:10.1046/j.1365-294x.2000.00871-2.

    Article  CAS  PubMed  Google Scholar 

  • Stein A., Gerstner K. and Kreft H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17, 866–880.

    Article  PubMed  Google Scholar 

  • Temu E. A., Minjas J. N., Coetzee M., Hunt R. H. and Shiff C. J. (1998) The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Temunović M., Franjić J., Satovic Z., Grgurev M., Frascaria-Lacoste N. and Fernández-Manjarrés J. F. (2012) Environmental heterogeneity explains the genetic structure of continental and Mediterranean populations of Fraxinus angustifolia Vahl. PLoS ONE 7(8), e42764. doi:10.1371/journal.pone.0042764.

    Google Scholar 

  • Torda G., Lundgren P., Willis B. L. and van Oppen M. J. H. (2013) Revisiting the connectivity puzzle of the common coral Pocillopora damicornis. Molecular Ecology 22, 5805–5820. doi:10.1111/mec.12540.

    Article  CAS  PubMed  Google Scholar 

  • Touré Y. T., Petrarca V., Traoré S. F., Coulibaly A., Maïga H. M., Sankaré O., Sow M., Di Deco M. A. and Coluzzi M. (1994) Ecological genetic studies in the chromosomal form Mopti of Anopheles gambiae s.str. in Mali, West Africa. Genetica 94, 213–223.

    Article  PubMed  Google Scholar 

  • Van Oosterhout C., Hutchinson W. F., Wills D. P. M. and Shipley P. (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.

    Article  Google Scholar 

  • van Rooyen J., Lalubin F., Glaizot O. and Christe P. (2013) Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasites & Vectors 6, 139. doi:10.1186/1756-3305-6-13.

    Article  Google Scholar 

  • Wang S. and Jacobs-Lorena M. (2013) Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends in Biotechnology 31, 185–193. doi:10.1016/j.tibtech.2013.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir B. S. and Cockerham C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • WHO [World Health Organization] (2014) World Malaria Report 2014. World Health Organization, Geneva, Switzerland. 242 pp. ISBN: 978 92 4 156483 0.

    Book  Google Scholar 

  • Wilkins E. E., Howell P. I. and Benedict M. Q. (2006) IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malaria Journal 5, 125. doi:10.1186/1475-2875-5-125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L., Benedict M. Q., Cornel A. J., Collins F. H. and Kafatos F. C. (1996) An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143, 941–952.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Boëte.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gélin, P., Magalon, H., Drakeley, C. et al. The fine-scale genetic structure of the malaria vectors Anopheles funestus and Anopheles gambiae (Diptera: Culicidae) in the north-eastern part of Tanzania. Int J Trop Insect Sci 36, 161–170 (2016). https://doi.org/10.1017/S1742758416000175

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000175

Key words

Navigation