Skip to main content
Log in

Effects of photoperiod on population performance and sexually dimorphic responses in two major arbovirus mosquito vectors, Aedes albopictus and Aedes aegypti (Diptera: Culicidae)

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The Asian tiger mosquito, Aedes albopictus (Skuse) and the yellow fever mosquito, Aedes aegypti (Linnaeus) are medically important species that vector several arboviruses. Globally, populations of both species experience (and are sensitive to) photoperiodic variations. The present study aims to test if photoperiod regimes affect the population performance of Ae. albopictus and Ae. aegypti. Since mosquitoes have sex-specific strategies to maximize fitness, we also tested the hypothesis that Ae. albopictus and Ae. aegypti would exhibit differences in the male and female response (sexually dimorphic response) to various photoperiod treatments. We reared cohorts of first instar larvae to adulthood in three photoperiod treatments: short day (10 h light), control (12 h light) and long day (14 h light). We measured and compared survival to adulthood, population growth, development time of males and females, and wing length across treatments. Although we detected no effects of photoperiod on the population performance of both species, we found evidence of a sexual dimorphic response to photoperiod in Ae. albopictus, but not in Ae. aegypti, with Ae. albopictus females being more sensitive to variations in photoperiod. The observed differences between sexes of Ae. albopictus are consistent with sex-specific developmental constraints. The absence of a sexually dimorphic response to photoperiod in Ae. aegypti can be attributed to different strategies evolved in this species to prepare for unfavourable conditions associated with shorter day length. We discuss the ecological and medical implications of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alto B. W. and Juliano S. A. (2001) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): Implications for range expansion. Journal of Medical Entomology 38, 646–656.

    Article  CAS  Google Scholar 

  • Alto B. W., Lampman R. L., Kesavaraju B. and Muturi E. J. (2013) Pesticide-induced release from competition among competing Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 50, 1240–1249.

    Article  Google Scholar 

  • Alto B. W. and Lounibos L. P. (2013) Vector competence for arboviruses in relation to the larval environment of mosquitoes, pp. 81–101. In Ecology of Parasite- Vector Interactions Vol. 3. (edited by W. Takken and C. J. M. Koenraadt). Wageningen Academic Publishers, The Netherlands.

    Chapter  Google Scholar 

  • Alto B. W., Lounibos L. P., Mores C. N. and Reiskind M. H. (2008a) Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proceedings of the Royal Society B: Biological Sciences 275, 463–471.

    Article  Google Scholar 

  • Alto B. W., Reiskind M. H. and Lounibos L. P. (2008b) Size alters susceptibility of vectors to dengue virus infection and dissemination. American Journal of Tropical Medicine and Hygiene 79, 688–695.

    Article  CAS  Google Scholar 

  • Anderson J. F. (1968) Influence of photoperiod and temperature on the induction of diapause in Aedes atropalpus (Diptera: Culicidae). Entomologia Experi-mentalis et Applicata 11, 321–330. doi:10.1111/j.1570-7458.1968.tb02061.x.

    Article  Google Scholar 

  • Bedhomme S., Agnew P., Sidobre C. and Michalakis Y. (2003) Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. Journal of Evolutionary Biology 16, 721–730. doi:10.1046/j.1420-9101.2003.00576.x.

    Article  CAS  Google Scholar 

  • Bevins S. N. (2008) Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae). Biological Invasions 10, 1109–1117. doi:10.1007/s10530-007-9188-8.

    Article  Google Scholar 

  • Brady O. J., Johansson M. A. Guerra C. A., Bhatt S. Golding N., Pigott D. M., Delatte H. Grech M. G., Leisnham P. T., Maciel-de-Freitas R., Styer L. M., Smith D. L., Scott T. W., Gething P. W. and Hay S. I. (2013) Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites & Vectors 6, 351. doi:10.1186/1756-3305-6-351.

    Article  Google Scholar 

  • Briegel H. (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology 36, 165–172.

    Article  Google Scholar 

  • Carrington L. B., Armijos M. V., Lambrechts L., Barker C. M. and Scott T. W. (2013a) Effects of fuctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One 8(3), e58824. doi:10.1371/journal.pone.0058824.

    Google Scholar 

  • Carrington L. B., Seifert S.N., Armijos M. V., Lambrechts L. and Scott T. W. (2013b) Reduction of Aedes aegypti vector competence for dengue virus under large temperature fuctuations. American Journal of Tropical Medicine and Hygiene 88, 689–697. doi:10.4269/ajtmh.12-0488.

    Article  Google Scholar 

  • Costanzo K. S., Kesavaraju B. and Juliano S. A. (2005) Condition-specific competition in container mosquitoes: the role of noncompeting life-history stages. Ecology 86, 3289–3295.

    Article  Google Scholar 

  • Costanzo K. S., Muturi E. J. and Alto B. W. (2011a) Trait- mediated effects of predation across life-history stages in container mosquitoes. Ecological Entomology 36, 605–615. doi:10.1111 /j.1365-2311.2011.01302.x.

    Article  Google Scholar 

  • Costanzo K. S., Muturi E. J., Lampman R. L. and Alto B. W. (2011b) The effects of resource type and ratio on competition with Aedes albopictus and Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology 48, 29–38.

    Article  CAS  Google Scholar 

  • Costanzo K., Schelble Jerz S. and Keenan M. (2015) The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology 40, 164–171. doi:10.1111 /jvec.12146.

    Article  CAS  Google Scholar 

  • Darsie R. F. Jr. and Ward R. A. (2005) Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. University of Florida Press, Gainesville, FL, USA. 400 pp.

    Google Scholar 

  • Delatte H., Gimonneau G., Triboire A. and Fontenille D. (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology 46, 33–41.

    Article  CAS  Google Scholar 

  • Dye C. (1986) Vectorial capacity: Must we measure all its components? Parasitology Today 2, 203–209.

    Article  CAS  Google Scholar 

  • Eisen L. and Moore C. G. (2013) Aedes (Stegomyia) aegypti in the continental United States: A vector at the cool margin of its geographic range. Journal of Medical Entomology 50, 467–478.

    Article  Google Scholar 

  • Enserink M. (2008) Entomology. A mosquito goes global. Science 320, 864–866. doi:10.1126/science.320.5878.864.

    Article  CAS  Google Scholar 

  • Farjana T. and Tuno N. (2013) Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 50, 838–846.

    Article  Google Scholar 

  • Grard G., Caron M., Mombo I. M., Nkoghe D., Mboui Ondo S., Jiolle D., Fontenille D., Paupy C. and Leroy E. M. (2014) Zika virus in Gabon (Central Africa)-2007: A new threat from Aedes albop-ictus? PLoS Neglected Tropical Diseases 8(2), e2681. doi:10.1371/journal.pntd.0002681.

    Article  Google Scholar 

  • Gratz N. G. (2004) Critical review of the vector status of Aedes albopictus. Medical and Veterinary Entomology 18, 215–227. doi:10.1111/j.0269-283X.2004.00513.x.

    Article  CAS  Google Scholar 

  • Grill C. P. and Juliano S. A. (1996) Predicting species interaction based on behavior: Predation and competition in container-dwelling mosquitoes. Journal of Animal Ecology 65, 63–76. doi:10.2307/5700.

    Article  Google Scholar 

  • Griswold M. W. and Lounibos L. P. (2005) Competitive outcomes of aquatic container Diptera depend on predation and resource levels. Annals of the Entomological Society of America 98, 673–681.

    Article  Google Scholar 

  • Hahn D. A. and Denlinger D. L. (2007) Meeting the energetic demands of insect diapause: Nutrition storage and utilization. Journal of Insect Physiology 53, 760–773.

    Article  CAS  Google Scholar 

  • Hawley W.A. (1988) The biology of Aedes albopictus. Journal of the American Mosquito Control Association (Suppl.) 4, 1–40.

    Google Scholar 

  • Hawley W. A., Reiter P., Copeland R. S., Pumpuni C. B. and Craig G. B. Jr. (1987) Aedes albopictus in North America: Probable introduction in used tires from northern Asia. Science 236, 1114–1116. doi:10.1126/science.3576225.

    Article  CAS  Google Scholar 

  • Hayes E.B. (2009) Zika virus outside Africa. Emerging Infectious Disease 15, 1347–1350.

    Article  Google Scholar 

  • Jordan R. G. and Bradshaw W. E. (1978) Geographic variation in the photoperiodic response of the Western tree-hole mosquito, Aedes sierrensis. Annals of the Entomological Society of America 71, 487–490. doi:10.1093/aesa/71.4.487.

    Article  Google Scholar 

  • Joy T. K., Arik A. J., Corby-Harris V., Johnson A. A. and Reihle M. A. (2010) The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Experimental Gerontology 45, 685–690. doi:10.1016/j.exger.2010.04.009.

    Article  Google Scholar 

  • Juliano S. A. (1998) Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition? Ecology 79, 255–268.

    Article  Google Scholar 

  • Juliano S. A. and Lounibos L. P. (2005) Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecology Letters 8, 558–574.

    Article  Google Scholar 

  • Juliano S. A., O’Meara G. F., Morrill J. R. and Cutwa M. M. (2002) Desiccation and thermal tolerance of eggs and coexistence of competing mosquitoes. Oecologia 130, 458–469.

    Article  Google Scholar 

  • Kleckner C. A., Hawley W. A., Bradshaw W. E., Holzapfel C. M. and Fisher I. J. (1995) Protandry in Aedes sier-rensis: the significance of temporal variation in female fecundity. Ecology 76, 1242–1250. doi:10.2307/1940931.

    Article  Google Scholar 

  • Lanciani C. A. and Anderson J. F. (1993) Effect of pho-toperiod on longevity and metabolic rate in Anopeheles quadrimaculatus. Journal of the American Mosquito Control Association 9, 158–163.

    CAS  PubMed  Google Scholar 

  • Leisnham P. T., Towler L. and Juliano S. A. (2011) Geographic variation of photoperiodic diapause but not adult survival or reproduction of the invasive mosquito Aedes albopictus (Diptera: Culicidae) in North America. Annals of the Entomological Socierty of America 104, 1309–1318.

    Article  CAS  Google Scholar 

  • Livdahl T. P. and Sugihara G. (1984) Non-linear interactions of populations and the importance of estimating per capita rates of change. Journal of Animal Ecology 53, 573–580.

    Article  Google Scholar 

  • Livdahl T. P. and Willey M. S. (1991) Prospects for an invasion: Competition between Aedes albopictus and native Aedes triseriatus. Science 253, 189–191. doi:10.1126/science.1853204.

    Article  CAS  Google Scholar 

  • Lounibos L. P. (2002) Invasions by insect vectors of human disease. Annual Review of Entomology 47, 233–266. doi:10.1146/annurev.ento.47.091201.145206.

    Article  CAS  Google Scholar 

  • Lounibos L. P., Escher R. L., and Lourenço-de-Oliveira R. (2003) Asymmetric evolution of photoperiodic dia pause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96, 512–518.

    Article  Google Scholar 

  • Lounibos L. P., Suárez S., Menéndez Z., Nishimura N., Escher R. L., O’Connell S. M. and Rey J. R. (2002) Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? Journal of Vector Ecology 27, 86–95.

    CAS  PubMed  Google Scholar 

  • Mitchell C. J. (1995) Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean Basin. Journal of Vector Ecology 20, 44–58.

    Google Scholar 

  • Mogi M., Miyagi I., Abadi K. and Syafruddin (1996) Inter-and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. Journal of Medical Entomology 33, 53–57.

    Article  CAS  Google Scholar 

  • Mohammed A., and Chadee D. D. (2011) Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica 119, 38–43.

    Article  Google Scholar 

  • Mori A., Oda T. and Wada Y. (1981) Studies on the egg diapause and overwintering of Aedes albopictus in Nagasaki. Tropical Medicine 23, 79–90.

    Google Scholar 

  • Murrell E. G. and Juliano S. A. (2008) Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 45, 375–383.

    Article  Google Scholar 

  • Muturi E. J., Blackshear M. Jr. and Montgomery A. (2012) Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. Journal of Vector Ecology 37, 154–161. doi:10.1111/j.1948-7134.2012.00212.x.

    Article  Google Scholar 

  • Nylin S. and Gotthard K. (1998) Plasticity in life-history traits. Annual Review of Entomology 43, 63–83.

    Article  CAS  Google Scholar 

  • Padmanabha H., Bolker B., Lord C. C., Rubio C. and Lounibos L. P. (2011) Food availability alters the effects of larval temperature on Aedes aegypti growth. Journal of Medical Entomology 48, 974–984.

    Article  CAS  Google Scholar 

  • Paupy C., Ollomo B., Kamgang B. Moutailler S., Rousset D., Demanou M., Hervé J.-P., Leroy E. and Simard F. (2010) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in Central Africa. Vector-Borne and Zoonotic Diseases 10, 259–266.

    Article  Google Scholar 

  • Pumpuni C. B., Knepler J. and Craig G. B. Jr. (1992) Influence of temperature and larval nutrition on diapause inducing photoperiod in Aedes albopictus. Journal of the American Mosquito Control Association 8, 223–227.

    CAS  PubMed  Google Scholar 

  • Reiskind M. H. and Lounibos L. P. (2013) Spatial and temporal patterns in abundance of Aedes aegypti L. (Stego-myia aegypti) and Aedes albopictus (Skuse) [Stegomyia al-bopictus (Skuse)] in southern Florida. Medical and Veterinary Entomology 27, 421–429. doi:10.1111 /mve.12000.

    Article  CAS  Google Scholar 

  • Reiter P. (2010) Yellow fever and dengue: A threat to Europe? Eurosurveillance 15(10), pii=19509. Available online: https://doi.org/www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19509.

    Google Scholar 

  • Rezza G. (2012) Aedes albopictus and the reemergence of dengue. BMC Public Health 12, 72. https://doi.org/doi.org/10.1186/1471-2458-12-72.

    Article  Google Scholar 

  • Richards S. L., Anderson S. L. and Alto B. W. (2012) Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for dengue virus in the Florida Keys. Journal of Medical Entomology 49, 942–946.

    Article  Google Scholar 

  • Roiz D., Rosà R., Arnoldi D. and Rizzoli A. (2010) Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in northern Italy. Vector-Borne and Zoonotic Diseases 10, 811–816.

    Article  Google Scholar 

  • Scheiner S. M. (2001) MANOVA. Multiple response variables and multispecies interactions, pp. 99–133. In Design and Analysis of Ecological Experiments, 2nd ed. (edited by S. M. Scheiner and J. Gurevitch). Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Steinwascher K. (1982) Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environmental Entomology 11, 150–153.

    Article  Google Scholar 

  • Tabachnick W. J. (1991) Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. American Entomologist 37, 14–24.

    Article  Google Scholar 

  • Tauber M. J., Tauber C. A. and Masaki S. (1985) Seasonal Adaptations of Insects. Oxford University Press, New York, New York. 426 pp.

    Google Scholar 

  • Teder T. and Tammaru T. (2005) Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321–334.

    Article  Google Scholar 

  • Thomas S. M., Obermayr U., Fischer D., Kreyling J. and Beierkuhnlein C. (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasites & Vectors 5, 100. doi:10.1186/1756-3305-5-100.

    Article  Google Scholar 

  • Tsunoda T., Cuong T. C., Dong T. D., Yen N. T., Le N. H., Phong T. V. and Minakawa N. (2014) Winter refuge for Aedes aegypti and Ae. albopictus mosquitoes in Hanoi during winter. PLoS One 9(4) e95606. doi:10.1371/journal.pone.0095606.

    Article  Google Scholar 

  • Urbanski J. M., Benoit J. B., Michaud M. R., Denlinger D. L. and Armbruster P. (2010) The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proceedings of the Royal Society B: Biological Sciences 277, 2683–2692. doi:10.1098/rspb.2010.0362.

    Article  CAS  Google Scholar 

  • Vega-Rúa A., Zouache K., Girod R., Failloux A. B. and Lourenço-de-Oliveira R. (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. Journal of Virology 88, 6294–6306. doi:10.1128/JVI.00370-14.

    Article  Google Scholar 

  • Waldock J., Chandra N. L., Lelieveld J., Proestos Y., Michael E., Christophides G. and Parham P. E. (2013) The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathogens and Global Health 107, 224–241. doi:10.1179/2047773213Y.0000000100.

    Article  Google Scholar 

  • West-Eberhard M. J. (2003) Developmental Plasticity and Evolution. Oxford University Press, New York. 816 pp.

    Google Scholar 

  • Westbrook C. J., Reiskind M. H., Pesko K. N., Greene K. E. and Lounibos L. P. (2010) Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector-Borne and Zoonotic Diseases 10, 241–247. doi:10.1089/vbz.2009.0035.

    Article  Google Scholar 

  • Wormington J. D. and Juliano S. A. (2014) Sexually dimorphic body size and development time plasticity in Aedes mosquitoes (Diptera: Culicidae). Evolutionary Ecology Research 16, 223–234.

    PubMed  PubMed Central  Google Scholar 

  • Yee D. A., Juliano S. A. and Vamosi S. M. (2012) Seasonal photoperiods alter developmental time and mass of an invasive mosquito, Aedes albopictus (Diptera: Culicidae), across its north-south range in the United States. Journal of Medical Entomology 49, 825–832.

    Article  CAS  Google Scholar 

  • Yee D. A., Kaufman M. G. and Juliano S. A. (2007) The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. Journal of Animal Ecology 76, 1105–1115. doi:10.1111/j.1365-2656.2007.01297.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Costanzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costanzo, K.S., Dahan, R.A. & Radwan, D. Effects of photoperiod on population performance and sexually dimorphic responses in two major arbovirus mosquito vectors, Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Int J Trop Insect Sci 36, 177–187 (2016). https://doi.org/10.1017/S1742758416000163

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000163

Key words

Navigation