Skip to main content

Host plant-based variation in fitness traits and major detoxifying enzymes activity in Scirtothrips dorsalis (Thysanoptera: Thripidae), an emerging sucking pest of tea

Abstract

Scirtothrips dorsalis Hood is a polyphagous species and an important sucking pest of tea (Camellia sinensis) (Theaceae). The fitness traits of S. dorsalis on two alternative host plants: Capsicum annuum L. (chilli) (Solanaceae) and Ricinus communis (castor oil plant) (Euphorbiaceae) and on C. sinensis and corresponding levels of defence enzymes was studied. The study revealed that C. sinensis is the more suitable host of S. dorsalis based on faster development (13.6 days) compared to the alternative hosts, C. annuum (15.5 days) and R. communis (16.7 days), a higher fecundity (C. sinensis: 11.4 eggs; C. annuum: 9.7 eggs; R. communis: 8.6 eggs), and superior egg hatchability (C. sinensis, 92.6%; C. annuum: 82.5%; and R. communis: 74.6%). The host-based variation in the fitness traits of S. dorsalis corroborated in light of differential activity of three major detoxifying enzymes, such as the general esterases (GEs), glutathione S-transferases (GSTs), and cytochrome P450 mediated monooxygenases (CYPs). Densitometric analysis of GEs showed five esterase isozymes (EST I-V) with retardation factor (Rf) values of 0.17, 0.22, 0.27, 0.35 and 0.52, respectively. The pixel density, and accordingly the profile height, varied in different host-specific S. dorsalis. A significant variation of the quantity of these enzymes was also apparent in the insect when reared on the three hosts. A 2.4 and 2.7,1.6 and 2.0, and 2.0 and 2.3-fold higher GEs, GSTs and CYPs activity on the two non-tea hosts possibly signify a predisposition of the species for higher tolerance to insecticides, enabling the pest to switch to tea where synthetic insecticides are routinely used.

This is a preview of subscription content, access via your institution.

References

  • Agosin M. (1985) Role of microsomal oxidations in insecticide degradation, pp. 647–712. In Comparative Insect Physiology, Biochemistry and Pharmacology (edited by L. I. Gilbert and G. A. Kerkut) Vol. 12. Pergamon, Oxford, UK.

    Google Scholar 

  • Ahmad S. (1986) Enzymatic adaptations of herbivorous insects and mites to phytochemicals. Journal of Chemical Ecology 12, 533–560. doi: https://doi.org/10.1007/BF01020571.

    CAS  PubMed  Article  Google Scholar 

  • Ahmad S., Brattsten L. B., Mullin C. A. and Yu S. J. (1986) Enzymes involved in the metabolism of plant allelochemicals, pp. 73–151. In Molecular Aspects of Insect-Plant Associations (edited by L. B. Brattsten and S. Ahmad). Plenum Press, New York, USA.

    Chapter  Google Scholar 

  • Alonso-Pimentel H., Korer J. B., Nufio C. and Papaj D. R. (1998) Role of colour and shape stimuli in host-enhanced oogenesis in the walnut fly, Rhagoletis juglandis. Physiological Entomology 23, 97–104. doi: https://doi.org/10.1046/j.1365-3032.1998.232076.x.

    Article  Google Scholar 

  • Ananthakrishnan T. N. (1993) Bionomics of thrips. Annual Review of Entomology 38, 71–92. doi: https://doi.org/10.1146/annurev.en.38.010193.000443.

    Article  Google Scholar 

  • Appel H. M. and Martin M. (1992) Significance of metabolic load in the evolution of host specificity of Manduca sexta. Ecology 73, 216–228. doi: https://doi.org/10.2307/1938733.

    Article  Google Scholar 

  • Awang A., Muhamad R. and Chong K. K. (1988) Comparative merits of cocoa pod and shoot as food sources of the mirid, Helopeltis theobromae Miller. The Planter 64, 100–104.

    Google Scholar 

  • Awmack C. S. and Leather S. R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817–844. doi: https://doi.org/10.1146/annurev.ento.47.091201.145300.

    CAS  PubMed  Article  Google Scholar 

  • Banerjee T. C. and Hoque N. (1985) Influence of host plants on development, fecundity and egg hatchability of the arctiid moth Diacrisia casignetum. Entomologia Experimentalis et Applicata 37, 193–198. doi: https://doi.org/10.1111/j.1570-7458.1985.tb03473.x.

    Article  Google Scholar 

  • Berenbaum M. R. (2002) Postgenomic chemical ecology: from genetic code to ecological interactions. Journal of Chemical Ecology 28, 873–896.

    CAS  PubMed  Article  Google Scholar 

  • Berenbaum M. R., Cohen M. B. and Schuler M. A. (1992) Cytochrome P450 monooxygenase genes in oligophagous Lepidoptera. ACS Symposium Series 505, 114–124.

    CAS  Article  Google Scholar 

  • Berenbaum M. R., Zangerl A. R. and Nitao J. K. (1986) Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40, 1215–1228.

    CAS  PubMed  Article  Google Scholar 

  • Bernays E. A. (1998) Evolution of feeding behavior in insect herbivores: success seen as different ways to eat without being eaten. Bioscience 48, 35–44.

    Article  Google Scholar 

  • Brattsten L. B. (1979a) Ecological significance of mixedfunction oxidations. Drug Metabolism Reviews 10, 35–58. doi: https://doi.org/10.3109/03602537908993900.

    CAS  PubMed  Article  Google Scholar 

  • Brattsten L. B. (1979b) Biochemical defense mechanisms in herbivores against plant allelochemicals, pp. 199–270. In Herbivores: Their Interaction with Secondary Plant Metabolites (edited by G. A. Rosenthal and D. H. Janzen). Academic Press, New York, USA.

    Google Scholar 

  • Brattsten L. B. (1983) Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores, pp. 173–195. In Plant Resistance to Insects (edited by P. A. Hedin). Symposium Series No. 208. American Chemical Society, Washington DC, USA.

    Chapter  Google Scholar 

  • Brattsten L. B., Evans C. K., Bonetti S. and Zalkow L. H. (1984) Induction by carrot allelochemicals of insecticide-metabolising enzymes in the southern armyworm (Spodoptera eridania). Comparative Biochemistry and Physiology 77, 29–37.

    CAS  Google Scholar 

  • Brattsten L. B., Wilkinson C. F. and Eisner T. (1977) Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science 196, 1349–1352.

    CAS  PubMed  Article  Google Scholar 

  • Brogdon W. G., McAllister J. C. and Vulule J. M. (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association 13, 233–237.

    CAS  PubMed  Google Scholar 

  • Brough C. N. and Dixon A. F. G. (1990) The effects of starvation on development and reproductive potential of apterous virginoparae of vetch aphid Megoura viciae. Entomologia Experimentalis et Applicata 55, 41–45.

    Article  Google Scholar 

  • Castañeda L. E., Figueroa C. C. and Nespolo R. F. (2010) Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. Journal of Evolutionary Biology 23, 2474–2483. doi: https://doi.org/10.1111/j.1420-9101.2010.02112.x.

    PubMed  Article  Google Scholar 

  • Das G. M. (1965) Pests of tea in North-East India and their control, pp. 169–173. In Tocklai Experimental Station Memorandum No. 27. Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India.

    Google Scholar 

  • Després L., David J. P. and Gallet C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 22, 298–307.

    PubMed  Article  Google Scholar 

  • Dethier V. G. (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8, 33–54.

    Article  Google Scholar 

  • Ehrlich P. R. and Raven P. H. (1964) Butterflies and plants: a study in coevolution. Evolution 18, 586–608.

    Article  Google Scholar 

  • Farazmand H., Rassoulian G. R. and Bayat-Assadi H. (2000) Comparative notes on growth and development of red palm weevil, Rhynchophorus ferrugineus Oliv. (Col.: Curculionidae), on date palm varieties in Saravan Region. Journal of Entomological Society of Iran 19, 1–14.

    Google Scholar 

  • Foster S. P., Woodcock C. M., Williamson M. S., Devonshire A. L., Denholm I. and Thompson R. (1999) Reduced alarm response by peach-potato aphids, Myzus persicae (Hemiptera, Aphididae), with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. Bulletin of Entomological Research 89, 133–138.

    Article  Google Scholar 

  • Fraenkel G. S. (1959) The raison d’etre of secondary plant substances. Science 129, 1466–1470. doi: https://doi.org/10.1126/science.129.3361.1466.

    CAS  PubMed  Article  Google Scholar 

  • Georghiou G. P. and Pasteur N. (1978) Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. Journal of Economic Entomology 71, 201–205.

    CAS  PubMed  Article  Google Scholar 

  • Giles K. L., Madden R. D., Stockland R., Payton M. E. and Dillwith J. W. (2002) Host plants affect predator fitness via the nutritional value of herbivore prey: investigation of a plant-aphid-ladybeetle system. Biocontrol 47, 1–21.

    Article  Google Scholar 

  • Gould F. (1984) Mixed function oxidases and herbivore polyphagy: the devil’s advocate position. Ecological Entomology 9, 29–34. doi: https://doi.org/10.1111/j.1365-tb00695.x.

    Article  Google Scholar 

  • Govind G., Mittapalli O., Griebel T., Allmann S., Böcker S. and Baldwin I. T. (2010) Unbiased transcriptional comparisons of generalist and specialist herbivores feeding on progressively defenseless Nicotiana attenuata plants. PLoS One 5, e8735. doi:https://doi.org/10.1371/journal.pone.0008735.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Habig W. H., Pabst M. J. and Jakoby W. B. (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry 249, 7130–7139.

    CAS  PubMed  Google Scholar 

  • Hazarika L. K., Bhuyan M. and Hazarika B. N. Insect pests of tea and their management}. Annual Review of Entomology 54, 267–284. doi: https://doi.org/10.1146/annurev.ento.53.103106.093359.

    CAS  PubMed  Article  Google Scholar 

  • Hodgson E. (1985) Microsomal monooxygenases, pp. 225–331. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford, UK.

    Google Scholar 

  • Hood J. D. (1919) Two new genera and thirteen new species of Australian Thysanoptera. Proceedings of the Biological Society of Washington 32, 75–92.

    Google Scholar 

  • Iyengar S., Arnason J. T., Philogene B. J. R., Werstiuk N. H. and Morand P. (1990) Comparative metabolism of the photoxic allelochemical a-terthienyl in three species of lepidopterans. Pesticide Biochemistry and Physiology 37, 154–164.

    CAS  Article  Google Scholar 

  • Ju R.-T., Wang F., Wan F.-H. and Li B. (2011) Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae). Journal of Pest Science 84, 33–39.

    Article  Google Scholar 

  • Kanno H. and Harris M. O. (2000) Physical features of grass leaves influence the placement of eggs within the plant by the Hessian fly. Entomologia Experimentalis et Applicata 96, 69–80.

    Article  Google Scholar 

  • Kao C. H., Hung C. F. and Sun C. N. (1989) Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. Journal of Economic Entomology 82(5), 1299–1340.

    CAS  Article  Google Scholar 

  • Kennedy G. G. (1984) 2-tridecanone, tomatoes and Heliothis zea: potential incompatibility of plant antibiosis with insecticidal control. Entomologia Experimentalis et Applicata 35, 305–311. doi: https://doi.org/10.1111/j.1570-tb03396.x.

    CAS  Article  Google Scholar 

  • Krieger R. I., Feeny P. P. and Wilkinson C. F. (1971) Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172, 579–581.

    CAS  PubMed  Article  Google Scholar 

  • Kumaresan D., Regupathy A. and Baskaran P. (1988) Pests of Spices. Rajalakshmi Publications, Nagercoil, India. 241 pp.

    Google Scholar 

  • Le G. G. (2006) Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochemistry and Molecular Biology 36, 674–682.

    Article  CAS  Google Scholar 

  • Leather S. R. and Burnand A. C. (1987) Factors affecting life-history parameters of the pine beauty moth, Panolis flammea (D&S): the hidden costs of reproduction. Functional Ecology 1, 331–338. doi: https://doi.org/10.2307/2389789.

    Article  Google Scholar 

  • Lee K. (1991) Glutathione-S-transferase activities in phytophagous insects: induction and inhibition by plant phototoxins and phenols. Insect Biochemistry 21, 353–361.

    CAS  Article  Google Scholar 

  • Legrand A. and Barbosa P. (2000) Pea aphid (Homoptera, Aphididae) fecundity, rate of increase and withinplant distribution unaffected by plant morphology. Environmental Entomology 29, 987–993. doi: https://doi.org/10.1603/0046-225X-29.5.987.

    Article  Google Scholar 

  • Li X., Berenbaum M. R. and Schuler M. A. (2002) Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Molecular Biology 11, 343–351.

    CAS  PubMed  Article  Google Scholar 

  • Li W., Schuler M. A. and Berenbaum M. R. (2003) Diversification of furanocoumarin-metabolizing cytochrome P450 in two papilionids: specificity and substrate encounter rate. Proceedings of the National Academy of Sciences USA 100(Suppl. 2), 14593–14598.

    CAS  Article  Google Scholar 

  • Li X., Schuler M. A. and Berenbaum M. R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52, 231–253.

    PubMed  Article  CAS  Google Scholar 

  • Li X., Zangerl A. R., Schuler M. A. and Berenbaum M. R. (2000) Cross-resistance to alpha-cypermethrin after xanthotoxin ingestion in Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology 93, 18–25.

    CAS  PubMed  Article  Google Scholar 

  • Lindroth R. L. (1989) Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomologia Experimentalis et Applicata 50, 29–35. doi: https://doi.org/10.1007/BF00190125.

    CAS  Article  Google Scholar 

  • Lindroth R. L., Scriber J. M. and Hsia M. T. S. (1988) Chemical ecology of the tiger swallowtail: mediation of host use by phenolic glycosides. Ecology 69, 814–822. doi: https://doi.org/10.2307/1941031.

    CAS  Article  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Martin T., Chandre F., Ochou O. G., Vaissayre M. and Fournier D. (2002) Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pesticide Biochemistry and Physiology 74, 17–26.

    Article  Google Scholar 

  • Mitter C., Farrell B. D. and Futuyma D. J. (1991) Phylogenetic studies of insect/plant interactions: insights into the genesis of diversity. Trends in Ecology and Evolution 6, 290–293.

    CAS  PubMed  Article  Google Scholar 

  • Mullin C. A. (1986) Adaptive divergence of chewing and sucking arthropods to plant allelochemicals, pp. 175–209. In Molecular Aspects of Insect-Plant Associations (edited by L. B. Brattsten and S. Ahmad). Plenum Press, New York, USA.

    Chapter  Google Scholar 

  • Mullin C. A., Croft B. A., Strickler K., Matsumura F. and Miller J. R. (1982) Detoxification enzyme differences between a herbivorous and predatory mite. Science 217, 1270–1272.

    CAS  PubMed  Article  Google Scholar 

  • Muraleedharan N. (1992) Pest control in Asia, pp. 375–412. In Tea: Cultivation to Consumption (edited by K. C. Wilson and M. N. Clifford). Chapman & Hall, London, UK.

    Chapter  Google Scholar 

  • Muraleedharan N. (2007) Tea insects: ecology and control, pp. 672–674. In Encyclopedia of Pest Management (edited by D. Pimentel). CRC Press, London, UK.

    Google Scholar 

  • Murphy S. T. and Briscoe B. R. (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News and Information 20, 35N–46N.

    Google Scholar 

  • Neal J. J. (1987) Metabolic costs of mixed-function oxidase induction in Heliothis zea. Entomologia Experi mental et Applicata 43, 175–179. doi: https://doi.org/10.1111/j.1570-7458.1987.tb03602.x.

    CAS  Article  Google Scholar 

  • Nehare S., Moharil M. P., Ghodki B. S., Lande G. K., Bisane K. D., Thakare A. S. and Barkhade U. P. (2010) Biochemical analysis and synergistic suppression of indoxacarb resistance in Plutella xylostella L. Journal of Asia-Pacific Entomology 13, 91–95.

    CAS  Article  Google Scholar 

  • Penilla R. P., Rodriguez A. D., Hemingway J., Trejo A., López A. D. and Rodriguez M. H. (2007) Cytochrome P450-based resistance mechanism and pyrethroid resistance in the field Anopheles albimanus resistance management trial. Pesticide Biochemistry and Physiology 89, 111–117.

    CAS  Article  Google Scholar 

  • Pffannenstiel R. S. and Yeargan K. V. (1998) Ovipositional preference and distribution of eggs in selected field and vegetable crops by Nabis roseipennis (Hemiptera, Nabidae). Journal of Entomological Science 33, 82–89.

    Article  Google Scholar 

  • Rattan P. S. (1992) Pest and disease control in Africa in tea, pp. 331–352. In Tea: Cultivation to Consumption (edited by K. C. Wilson and M. N. Clifford). Chapman & Hall, London, UK.

    Chapter  Google Scholar 

  • Reilly C. C., Gentry C. R. and McVay J. R. (1987) Biochemical evidence for resistance of rootstocks to the peachtree borer and species separation of peachtree borer and lesser peachtree borer (Lepidoptera, Sesiidae) on peach trees. Journal ofEconomic Entomology 80, 338–343. doi: https://doi.org/10.1093/jee/80.2.338.

    CAS  Article  Google Scholar 

  • Riley D. G. and Tan W. (2003) Host plant effects on resistance to bifenthrin in silverleaf whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology 96, 1315–1321.

    CAS  PubMed  Article  Google Scholar 

  • Rossiter M. C. (1991a) Environmentally-based maternal effects: a hidden force in insect population dynamics? Oecologia 87, 288–294. doi: https://doi.org/10.1007/BF00325268.

    CAS  PubMed  Article  Google Scholar 

  • Rossiter M. C. (1991b) Maternal effects generate variation in life history: consequences of egg weight plasticity in the gypsy moth. Functional Ecology 5, 386–393. doi: https://doi.org/10.2307/2389810.

    Article  Google Scholar 

  • Rossiter M. C., Cox-Foster D. L. and Briggs M. A. (1993) Initiation of maternal effects in Lymantria dispar: genetic and ecological components of egg provisioning. Journal of Evolutionary Biology 6, 577–590.

    Article  Google Scholar 

  • Saeed R., Sayyed A. H., Shad S. A. and Zaka S. M. Effect of different host plants on the fitness of diamond-back moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Protection 29, 178–182.

    Article  Google Scholar 

  • Saha D. (2014) Assessment of population variability at subcellular level of some common sucking tea pests from Darjeeling Hill and its adjoining plain. PhD Thesis, University of North Bengal, Sliguri-734013, District-Darjeeling, West Bengal, India.

    Google Scholar 

  • Saha D. and Mukhopadhyay A. (2013) Insecticide resistance mechanisms in three sucking insect pests of tea with reference to North East India: an appraisal. International Journal of Tropical Insect Science 33, 46–70.

    Article  Google Scholar 

  • Saha D., Mukhopadhyay A. and Bahadur M. (2012a) Effect of host plants on fitness traits and detoxifying enzymes activity of Helopeltis theivora (Heteroptera, Miridae), a major sucking insect pest of tea. Phytoparasitica 40, 433–444. doi: https://doi.org/10.1007/s12600-012-0244-2.

    CAS  Article  Google Scholar 

  • Saha D., Mukhopadhyay A. and Bahadur M. (2012b) Genetic diversity of Empoasca flavescens Fabricius (Homoptera: Cicadellidae), an emerging pest of tea from sub-Himalayan plantations of West Bengal, India. Proceedings of the Zoological Society 65, 126–131.

    Article  Google Scholar 

  • Saha D., Roy S. and Mukhopadhyay A. (2012c) Seasonal incidence and enzyme-based susceptibility to synthetic insecticides in two upcoming sucking insect pests of tea. Phytoparasitica 40, 105–115.

    CAS  Article  Google Scholar 

  • Saha D., Roy S. and Mukhopadhyay A. (2012d) Insecticide susceptibility and activity of major detoxifying enzymes in female Helopeltis theivora Waterhouse (Heteroptera: Miridae) from sub-Himalayan tea plantations of North Bengal, India. International Journal of Tropical Insect Science 32, 85–93. doi: https://doi.org/10.1017/S1742758412000161.

    Article  Google Scholar 

  • Saha D., Mukhopadhyay A. and Bahadur M. (2013) Variation in the activity of three detoxifying enzymes in major sucking pest of tea, Helopeltis theivora Waterhouse (Heteroptera, Miridae) from sub-Himalayan tea plantations of West Bengal, India. Proceedings of Zoological Society 66(2), 92–99.

    Article  Google Scholar 

  • Schuler M. A. (1996) The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiology 112, 1411–1419.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Scott J. G., Liu N. and Wen Z. (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology — Part C: Pharmacology, Toxicology, and Endocrinology 121, 147–155.

    CAS  Google Scholar 

  • Sivapalan P. (1999) Pest management in tea, pp. 625–646. In Global Advances in Tea Science (edited by N. K. Jain). Aravali Books, New Delhi.

    Google Scholar 

  • Terriere L. C. (1984) Induction of detoxication enzymes in insects. Annual Review of Entomology 29, 71–88. doi: https://doi.org/10.1146/annurev.en.29.010184.000443.

    CAS  PubMed  Article  Google Scholar 

  • Tiwari S., Pelz-Stelinski K., Mann R. S. and Stelinski L. L. Glutathione-S-transferase and cytochrome P450 activity levels in Candidatus Liberibacter asiaticusinfected and uninfected Asian citrus psyllid (Hemiptera: Psyllidae). Annals of the Entomological Society of America 104, 297–305.

  • Van Asperen K. (1962) A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8, 401–416.

    CAS  Article  Google Scholar 

  • Venette R. C. and E. E. Davis. (2004) Chilli Thrips/Yellow Tea Thrips, Scirtothrips dorsalis Hood (Thysanoptera, Thripidae) Mini Pest Risk Assessment. University of Minnesota, Saint Paul, Minnesota. 31 pp.

    Google Scholar 

  • Wadleigh R. W. and Yu S. J. (1987) Glutathione transferase activity of fall armyworm larvae toward α, ß-unsaturated carbonyl allelochemicals and its induction by allelochemicals. Insect Biochemistry 17, 759–764.

    CAS  Article  Google Scholar 

  • Wadleigh R. W. and Yu S. J. (1988) Detoxification of isocyanate allelochemicals by glutathione transferase in three lepidopterous species. Journal of Chemical Ecology 14, 1279–1288.

    CAS  PubMed  Article  Google Scholar 

  • Ward S. A. and Dixon A. F. G. (1982) Selective resorption of aphid embryos and habitat changes relative to life-span. Journal of Animal Ecology 51, 859–864. doi: https://doi.org/10.2307/4010.

    Article  Google Scholar 

  • Whittaker R. H. and Feeny P. P. (1971) Allelochemics chemical interactions between species. Science 171, 757–770.

    CAS  PubMed  Article  Google Scholar 

  • Wink M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3–19.

    CAS  PubMed  Article  Google Scholar 

  • Wink M. and Waterman P. (1999) Chemotaxonomy in relation to molecular phylogeny of plants. Annual Plant Reviews 2, 300–341.

    CAS  Google Scholar 

  • Yang X., Margolies D. C., Zhu K. Y. and Buschman L. L. (2001) Host plant-induced changes in detoxyfication enzymes and susceptibility to pesticides in the twospotted spider mite (Acari: Tetranichidae). Journal of Economic Entomology 94, 381–387.

    CAS  PubMed  Article  Google Scholar 

  • Yu S. J. (1983) Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworm. Pesticide Biochemistry and Physiology 19, 330–336.

    CAS  Article  Google Scholar 

  • Yu S. J. (1986) Host plant induction of microsomal monooxygenases in relation to organophosphate activation in fall armyworm larvae. The Florida Entomologist 69, 579–587. doi: https://doi.org/10.2307/3495393.

    CAS  Article  Google Scholar 

  • Yu S. J. (1989) B-glucosidase in four phytophagous Lepidoptera. Insect Biochemistry 19, 103–108.

    CAS  Article  Google Scholar 

  • Yu S. J. (2008) The Toxicology and Biochemistry of Insecticides. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Yu S. J. and Abo-Elghar G. E. (2000) Allelochemicals as inhibitors of glutathione S-transferase in the fall armyworm. Pesticide Biochemistry and Physiology 68, 173–183.

    CAS  Article  Google Scholar 

  • Yu S. J., Berry R. E. and Terriere L. C. (1979) Host plant stimulation of detoxifying enzymes in a phytophagous insect. Pesticide Biochemistry and Physiology 12, 280–284.

    CAS  Article  Google Scholar 

  • Yu S. J. and Ing R. T. (1984) Microsomal biphenyl hydroxylase of fall armyworm larvae and its induction by allelochemicals and host plants. Comparative Biochemistry and Physiology: — Part C: Comparative Pharmacology 78, 145–152.

    CAS  Article  Google Scholar 

  • Zeng R. S., Zhimou W., Goudong N., Schular M. A. and Berenbaum M. (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. Journal of Chemical Ecology 33, 449–461.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Saha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, D. Host plant-based variation in fitness traits and major detoxifying enzymes activity in Scirtothrips dorsalis (Thysanoptera: Thripidae), an emerging sucking pest of tea. Int J Trop Insect Sci 36, 106–118 (2016). https://doi.org/10.1017/S1742758416000102

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000102

Key words

  • Scirtothrips dorsalis
  • tea pest
  • alternative host
  • fitness traits
  • detoxifying enzymes
  • general esterases
  • glutathione S-transferase
  • cytochrome P450 monooxygenase
  • Camellia sinensis
  • Capsicum annuum
  • Ricinus communis