Skip to main content
Log in

Ecological variation and resistance levels to propoxur and chlorpyrifos in Anopheles stephensi (Diptera: Culicidae), a malaria mosquito from India

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A total of 39 strains of Anopheles stephensi, an important urban malaria vector, were collected from various parts of India and maintained in the insectary for this study. Based on the egg-float ridge number, 19 strains were classified into ecological variants and 32 strains were exposed to chlorpyrif os and propoxur to investigate their resistance status. Filter paper containing freshly laid eggs was taken, the ridge numbers on the floats were counted under the microscope, and strains were classified into ecological variants. Of the 19 strains, 18 were of ‘type form’, with ridge numbers ranging from 15 to 21. The Papareddipalya (PRP) strain belonged to the ‘intermediate form’, with 14 to 17 ridge numbers. Larval bioassays were carried out according to the procedure of the WHO. For chlorpyrifos, the lowest LC50 value was 0.00107 mg/l (Padmanabhanagar strain) and the highest value was 0.0403 mg/l (GOA-A strain). Furthermore, the lowest LC90 value was 0.00368 mg/l (Delhi strain) and the highest was 0.1746 mg/l (GOA-A strain). For propoxur, the lowest LC50 value was 0.00029 mg/l (Goraguntepalya strain) and the highest value was 0.0037 mg/l (JP Nagar strain). Moreover, the lowest LC90 value was 0.00094 mg/l (Goraguntepalya strain) and the highest value was 0.0115 mg/l (JP Nagar strain). The tolerance values ranged from 1.26 to 37.68 for chlorpyrifos and from 1.34 to 12.77 for propoxur. All the type forms were from urban and semi-urban locations, and the intermediate strain was from a semi-urban location. The bioassay results indicated that the strains of An. stephensi were more susceptible to propoxur than to chlorpyrifos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott W. S. (1925) A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265–266.

    Article  CAS  Google Scholar 

  • Akiner M. M. (2014) Malathion and propoxur resistance in Turkish populations of the Anopheles maculipennis Meigen (Diptera: Culicidae) and relation to the insensitive acetylcholinesterase. Türkiye Parazitoloji Dergisi 38, 111–115.

    Google Scholar 

  • Boike A. H. Jr, Rathburn C. B. Jr, Floore T. G., Rodriguez H. M. and Coughlin J. S. (1989) Insecticide tolerance of Culex nigripalpus in Florida. Journal of the American Mosquito Control Association 5, 522–528.

    PubMed  Google Scholar 

  • Brown A. W. A. and Pal R. (1971) Insecticide Resistance in Arthropods, 2nd edn. WHO Monograph Series Vol. 38. World Health Organization, Geneva. 491 pp.

  • Chandrakala B. N. and Shetty N. J. (2006) Genetic studies of chlorpyrifos, an organophosphate insecticide resistance in Anopheles stephensi Liston, A malaria mosquito. Journal of Cytology and Genetics 7, 155–160.

    Google Scholar 

  • Chang K. S., Yoo D. H., Shin E. H., Lee W. G., Roh J. Y. and Park M. Y. (2013) Susceptibility and resistance of field populations of Anopheles sinensis (Diptera: Culicidae) collected from Paju to 13 insecticides. Osong Public Health and Research Perspectives 4, 76–80.

    Article  Google Scholar 

  • Dev V. and Sharma V. P. (2013) The dominant mosquito vectors of human malaria in India. In Anopheles mosquitoes - New insights into malaria vectors (edited by S. Manguin). InTech, (http://cdn.intechopen.com/ pdfs-wm/43975.pdf)

    Google Scholar 

  • Dhingra N., Jha P., Sharma V. P., Cohen A. A., Jotkar R. M., Rodriguez P. S., Bassani D. G., Suraweera W., Laxminarayan R. and Peto R. (2010) Adult and child malaria mortality in India: a nationally representative mortality survey. Lancet 376, 1768–1774.

    Article  Google Scholar 

  • Finney D. J. (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge. 333 pp.

    Google Scholar 

  • Ghosh C., Rajasree B. H., Priyalakshmi B. L. and Shetty N. J. (2002) Susceptibility status of different strains of Anopheles stephensi Liston to fenitrothion, deltamethrin and Cypermethrin. Pestology 4, 47–52.

    Google Scholar 

  • Hanafi-Bojd A. A., Vatandoost H. and Jafari R. (2006) Susceptibility status of Anopheles dthali and An. fluviatilis to commonly used larvicides in an endemic focus of malaria, southern Iran. Journal of Vector Borne Diseases 43, 34–38.

    CAS  PubMed  Google Scholar 

  • Harbach R. E. (2007) The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa 1668, 591–638.

    Google Scholar 

  • Hartley D. and Kidd H. (1983) The Agrochemicals Handbook. Royal Society of Chemistry, Nottingham, England. 1100 pp.

    Google Scholar 

  • Hemingway J. (1981) Genetics and biochemistry of insecticide resistance in anophelines. PhD Thesis, University of London. 310 pp.

    Google Scholar 

  • Hudson J. E. (1983) Susceptibility of Aedes aegypti and Culex quinquefasciatus to insecticide in Paramaribo, Suriname, 1979–1981, and experimental selection for resistance. Cahiers ORSTOM/serie entomologie medicale et parasitologie 21, 275–279.

    Google Scholar 

  • Kasap H., Kasap M., Alptekin D., Luleyap U. and Herath P. R. (2000) Insecticide resistance in Anopheles sacharovi Favre in southern Turkey. Bulletin of the World Health Organization 78, 687–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap R. and Shetty N. J. (2011) Insecticide susceptibility studies of Aedes aegypti (Linnaeus) to synthetic pyrethroids Cypermethrin and bifenthrin. Pestology 35, 53–57.

    CAS  Google Scholar 

  • Manouchehri A. V. and Yaghoobi-Ershadi M. R. (1988) Propoxur susceptibility test of Anopheles stephensi in southern Islamic Republic of Iran (1976–86). Journal of the American Mosquito Control Association 4, 159–162.

    CAS  PubMed  Google Scholar 

  • McEwen F. L. and Stephenson G. R. (1979) The Use and Significance of Pesticides in the Environment. John Wiley and Sons Inc., New York. 538 pp.

    Google Scholar 

  • Mehravaran A., Vatandoost H., Oshaghi M. A., Abai M. R., Edalat H., Javadian E., Mashayekhi M., Piazak N. and Hanafi-Bojd A. A. (2012) Ecology of Anopheles stephensi in a malarious area, southeast of Iran. Acta Medica Iranica 50, 61–65.

    PubMed  Google Scholar 

  • Mukhopadhyay A. K., Karmakar P., Hati A. K. and Dey P. (1997) Recent epidemiological status of malaria in Calcutta Municipal Corporation area, West Bengal. Indian Journal of Malariology 34, 188–196.

    CAS  PubMed  Google Scholar 

  • Nagpal B. N. and Sharma V. P. (1995) Indian Anophelines. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi. 416 pp.

    Google Scholar 

  • Nagpal B. N., Srivastava A., Kalra N. L. and Subbarao S. K. (2003) Spiracular indices in Anopheles stephensi: a taxonomic tool to identify ecological variants. Journal of Medical Entomology 40, 747–749.

    Article  CAS  Google Scholar 

  • National Research Council (1986) Pesticide Resistance: Strategies and Tactics for Management. Academy Press, Washington, DC. 471 pp.

    Google Scholar 

  • N’Guessan R., Boko P., Odjo A., Chabi J., Akogbeto M. and Rowland M. (2010) Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl. Malaria Journal 9, 44.

    Article  Google Scholar 

  • Olayemi I. K., Ande A. T., Chita S., Ibemesi G., Ayanwale V. A. and Odeyemi O. M. (2011) Insecticide susceptibility profile of the principal malaria vector, Anopheles gambiae s.l. (Diptera: Culicidae), in North-Central Nigeria. Journal of Vector Borne Diseases 48, 109–112.

    CAS  PubMed  Google Scholar 

  • Puri I. M. (1949) Anophelines of the oriental region, pp. 483–505. In Malariology (edited by M. F. Boyd). Saunders, Philadelphia.

    Google Scholar 

  • Raghavendra K., Verma V., Srivastava H. C., Gunasekaran K., Sreehari U. and Dash A. P. (2010) Persistence of DDT, malathion and deltamethrin resistance in Anopheles culicifacies after their sequential withdrawal from indoor residual spraying in Surat district, India. Indian Journal of Medical Research 132, 260–264.

    CAS  PubMed  Google Scholar 

  • Rao B. A., Sweet W. C. and Subba Rao A. M. (1938) Ova measurements of A. stephensi type and A. stephensi var. mysorensis. Journal of the Malaria Institute of India 1, 261–266.

    Google Scholar 

  • Rao T. R. (1981) The Anophelines of India. Indian Council of Medical Research, New Delhi. 518 pp.

    Google Scholar 

  • Rao T. R. (1984) The Anophelines of India (revised edition). Malaria Research Centre (ICMR), New Delhi. 518 pp.

    Google Scholar 

  • Rutledge L. C., Ward R. A. and Bickley W. E. (1970) Experimental hybridization of geographic strains of Anopheles stephensi (Diptera: Culicidae). Annals of the Entomological Society of America 63, 1024–1030.

    Article  CAS  Google Scholar 

  • Sanil D. and Shetty N. J. (2010) Genetic study of propoxur resistance - A carbamate insecticide in the malaria mosquito, Anopheles stephensi Liston. Malaria Research and Treatment 2010, Article ID 502824, doi:10.4061/2010/502824

    Google Scholar 

  • Shetty N. J., Zin T., Hariprasad T. P. N. and Minn M. Z. (2006) Insecticide susceptibility studies in thirty strains of An. stephensi Liston, a malaria vector to alphamethrin, bifenthrin (synthetic pyrethroids) and neem (a botanical insecticide). Pestology 30, 21–28.

    Google Scholar 

  • Shetty N. J., Vasanth S. N. and Sanil D. (2007) Insecticide susceptibility studies of fenthion and temephos in thirty strains of An. stephensi Liston, a malaria mosquito. Pestology 31, 33–39.

    CAS  Google Scholar 

  • Shetty N. J. (1983) Chromosomal translocations and inherited semisterility in the malaria vector, An. fluviatilis James. Indian Journal of Malariology 20, 45–47.

    Google Scholar 

  • Shetty N. J. (2002a) The genetic control of Anopheles stephensi — a malaria mosquito, pp. 44–79. In Trends in Malaria and Vaccine Research: The Current Indian Scenario (edited by D. Raghunath and R. Nayak). Tata McGraw Hill, New Delhi.

    Google Scholar 

  • Shetty N. J. (2002b) Evaluation of the insecticide susceptibility studies of mosquitoes of river Cauvery Basin, Karnataka State. Entomon 27, 375–383.

    CAS  Google Scholar 

  • Shetty N. J., Minn M. Z., Zin T. and Juanita S. R. (2010) Insecticides susceptibility studies of mosquito larvae from Mandya District, Karnataka State. The Journal of Communicable Diseases 42, 71–73.

    CAS  PubMed  Google Scholar 

  • Shetty N. J., Madhyastha A. D., Ghosh C. and Rajashree B. H. (1999) Egg float ridge number in Anopheles stephensi: ecological variation. Journal of Parasitic Diseases 23, 45–48.

    Google Scholar 

  • Shetty V., Sanil D. and Shetty N. J. (2012) Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Management Science 69, 257–267.

    Article  Google Scholar 

  • Shetty N. J., Hariprasad T. P. N., Sanil D. and Zin T. (2013) Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito. Parasitology Research 112, 3851–3857.

    Article  CAS  Google Scholar 

  • Sorokin M. N., Adamishina T. A., Stepnov A. P., Ivanova V. L. and Ermishev Iu V. (1991) The seasonal changes in the resistance and irritability to insecticides in the malarial mosquitoes in Karakalpakia. Meditsinskaia parazitologiia i parazitarnye bolezni 4, 9–12.

    Google Scholar 

  • Subbarao S. K., Vasantha K., Adak T., Sharma V. P. and Curtis C. E (1987) Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis. Medical and Veterinary Entomology 1, 265–271.

    Article  CAS  Google Scholar 

  • Sweet W. C. and Rao B. A. (1937) Races of An. stephensi Liston, 1901. Indian Medical Gazette 72, 665–674.

    CAS  PubMed  Google Scholar 

  • Tikar S. N., Mendki M. J., Sharma A. K., Sukumaran D., Vee V., Prakash S. and Parashar B. D. (2011) Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. Journal of Insect Science 11, 85.

    Article  CAS  Google Scholar 

  • Tiwari S., Ghosh S. K., Ojha V. P., Dash A. P. and Raghavendra K. (2010) Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, South India. Malaria Journal 9, 179. doi:10.1186/1475-2875-9-179.

    Article  Google Scholar 

  • Vatandosst H. and Borhani N. (2004) Susceptibility and irritability levels of main malaria vectors to synthetic pyrethroids in the endemic areas of Iran. Acta Medica Iranica 42, 240–247.

    Google Scholar 

  • WHO [World Health Organization] (2014) Fact sheet no. 94. Available at: http://www.who.int/mediacentre/factsheets/fs094/en/

    Google Scholar 

  • WHO [World Health Organization] (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • WHO [World Health Organization] (1981) Instruction for determining susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC 81, 807. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • WHO [World Health Organization] (2009) Progress and prospects for the use of genetically modified mosquitoes to inhibit disease transmission. Report on planning meeting 1. World Health Organization, Geneva, Switzerland, (http://www.who.int/tdr/publications/documents/gmm-report.pdf)

    Google Scholar 

  • Yaghoobi-Ershadi M. R., Namazi J. and Piazak N. (2001) Bionomics of Anopheles sacharovi in Ardebil province, northwestern Iran during a larval control program. Acta Tropica 78, 207–215.

    Article  CAS  Google Scholar 

  • Zahirnia A. H., Vatandoost H., Nateghpour M. and Djavadian E. (2002) Insecticide resistance/susceptibility monitoring in Anopheles pulcherrimus (Diptera: Culicidae) in Ghasreghand District, Sistan and Baluchistan Province, Iran. Iranian Journal of Public Health 31, 11–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadikere Jaya Shetty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariprasad, T.P.N., Shetty, N.J. Ecological variation and resistance levels to propoxur and chlorpyrifos in Anopheles stephensi (Diptera: Culicidae), a malaria mosquito from India. Int J Trop Insect Sci 36, 48–59 (2016). https://doi.org/10.1017/S1742758415000259

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758415000259

Key words

Navigation