Skip to main content
Log in

Pill-millipedes (Arthrosphaera: Sphaerotheriida) of the Western Ghats: a future source of antioxidants?

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Along with plant sources, arthropods (such as millipedes) are also known for their antioxidant activities that can help combat human ailments. Therefore, methanolic extracts of males and females of two endemic giant pill-millipedes of the Western Ghats (Arthrosphaera fumosa Pocock and Arthrosphaera magna Attems) were evaluated for antioxidant potential. The bioactive principles and activities assessed were total phenolics, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl or DPPH radical scavenging, ferrous ion chelation, reducing power and hydrogen peroxidase scavenging. Significant differences were shown between the two species, the sexes and the sexes within millipede species in total antioxidant activity, DPPH radical scavenging and ferrous ion chelation. Total phenolics and EC50 of DPPH radical scavenging activity differed significantly only between species and the sexes. This study clearly demonstrated that the antioxidant capacity of the methanolic extract of Arthrosphaera spp. is comparable to the ascorbic acid standard and possesses potential scavenging ability against reactive oxygen species generated during oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alothman M., Bhat R. and Karim A. A. (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science and Technology 20, 201–212.

    Article  CAS  Google Scholar 

  • Anderson D. (1996) Antioxidant defences against reactive oxygen species causing genetic and other damage. Mutation Research 350, 103–108. doi:10.1016/0027-5107(95)00096-8.

    Article  Google Scholar 

  • Brand-Williams W., Cuvelier M. E. and Berset C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28, 25–30.

    Article  CAS  Google Scholar 

  • Chang S.-T., Wu J.-H., Wang S.-Y., Kang P.-L., Yang N.-S. and Shyur L.-E (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry 49, 3420–3424. doi:10.1021/jf0100907.

    Article  CAS  Google Scholar 

  • Decker E. A. (1997) Phenolics: prooxidants or antioxidants? Nutrition Reviews 55, 396–407.

    Article  CAS  Google Scholar 

  • Dinis T. C., Madeira V. M. and Almeida L. M. (1994) Action of phenolic derivatives (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315, 161–169.

    Article  CAS  Google Scholar 

  • Duh P.-D., Tu Y.-Y. and Yen G.-C. (1999) Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT - Food Science and Technology 32, 269–277.

    Article  CAS  Google Scholar 

  • Fang Y Z., Yang S. and Wu G. (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872–879.

    Article  Google Scholar 

  • Gordon M. H. (1990) The mechanism of antioxidant action in vitro, pp. 1–18. In Food Antioxidants (edited by B. J. F. Hudson). Elsevier Applied Food Science Series. Elsevier, London, UK.

    Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (2007) Free Radicals in Biology and Medicine 4th edn. Oxford University Press, Oxford, UK. 704 pp.

    Google Scholar 

  • Halliwell B., Murcia M. A., Chirico S. and Aruoma O. I. (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition 35, 7–20.

    Article  CAS  Google Scholar 

  • Kaur C. and Kapoor H. C. (2002) Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology 37, 153–161. doi:10.1046/j.l365-2621.2002.00552.x.

    Article  CAS  Google Scholar 

  • Komali A. S., Zheng Z. and Shetty K. (1999) A mathematical model for the growth kinetics and synthesis of phenolics in Oregano (Origanum vulgare) shoot cultures inoculated with Pseudomonas species. Process Biochemistry 35, 227–235.

    Article  CAS  Google Scholar 

  • Lee Y.-L., Yen M.-T and Mau J.-L. (2007) Antioxidant properties of various extracts from Hypsizygus marmoreus. Food Chemistry 104, 1–9.

    Article  CAS  Google Scholar 

  • Liu S., Sun J., Yu L., Zhang C., Bi J., Zhu F., Qu M. and Yang Q. (2012) Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chemistry 134, 1885–1891. doi:10.1016/ j.foodchem.2012.03.091.

    Article  CAS  Google Scholar 

  • Mau J.-L., Lin H.-C. and Chen C.-C. (2002) Antioxidant properties of several medicinal mushrooms. Journal of Agricultural and Food Chemistry 50, 6072–6077.

    Article  CAS  Google Scholar 

  • Medved I., Brown M. J., Bjorksten A. R., Murphy K. T., Petersen A. C., Sostaric S., Gong X. and McKenna M. J. (2004) N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. Journal of Applied Physiology 97, 1477–1485.

    Article  CAS  Google Scholar 

  • Miliauskas G., Venskutonis P. R. and Van Beek T A. (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85, 231–237. doi:10.1016/j.foodchem.2003.05.007.

    Article  CAS  Google Scholar 

  • Oktay M., Gülçin I. and Küfrevioglu Ö. I. (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT - Food Science and Technology 36, 263–271.

    Article  CAS  Google Scholar 

  • Oyaizu M. (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics 44, 307–315.

    Article  CAS  Google Scholar 

  • Prieto P., Pineda M. and Aguilar M. (1999) Spectro-photometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269, 337–341.

    Article  CAS  Google Scholar 

  • Raghavan S., Kristinsson H. G. and Leeuwenburgh C. (2008) Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. Journal of Agricultural and Food Chemistry 56, 10359–10367. doi: 10.1021/jf8017194.

    Article  CAS  Google Scholar 

  • Randhir R., Lin Y.-T. and Shetty K. (2004) Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry 39, 637–646. doi:10.1016/S0032-9592(03)00197-3.

    Article  CAS  Google Scholar 

  • Rosset J., Bärlocher R and Oertli J.J. (1982) Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Internationale Revue der gesamten Hydrobiologie 67, 695–711.

    CAS  Google Scholar 

  • Ruch R. J., Cheng S. J. and Klaunig J. E. (1989.) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10, 1003–1008.

    Article  CAS  Google Scholar 

  • Sagisaka A., Miyanoshita A., Ishibashi J. and Yamakawa M. (2001) Purification, characterization and gene expression of a glycine and proline-rich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma. Insect Molecular Biology 10, 293–302.

    Article  CAS  Google Scholar 

  • SigmaPlot 11 (2008) SigmaPlot® 11 User’s Guide, Part 1 Part 2. Systat Software, Inc., San Jose, California.

    Google Scholar 

  • Srivastava A., Harish S. R. and Shivanandappa T. (2006) Antioxidant activity of the roots of Decalepis hamiltonii (Wight & Arn.). LWT - Food Science and Technology 39, 1059–1065. doi:10.1016/j.lwt.2005.07.005.

    Article  CAS  Google Scholar 

  • Suh H.-J., Kim S.-R., Hwang J.-S., Kim M. J. and Kim I. (2011a) Antioxidant activity of aqueous methanol extracts from the lucanid beetle, Serrognathus platyme-lus castanicolor Motschulsky (Coleoptera: Lucanidae). Journal of Asia-Pacific Entomology 14, 95–98.

    Article  Google Scholar 

  • Suh H. J., Kim S.-R., Lee K. S., Park S. and Kang S. C. (2010) Antioxidant activity of various solvent extracts from Allomyrina dichotoma (Arthropoda: Insecta) larvae. Journal of Photochemistry and Photobiology B: Biology 99, 67–73. doi: 10.1016/j.jphotobiol.2010. 02.005.

    Article  CAS  Google Scholar 

  • Suh H.-J., Lee K.-S., Kim S.-R., Shin M.-H, Park S. G. and Park S. (2011a) Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L. Journal of Photochemistry and Photobiology B: Biology 102, 102–107.

    Article  CAS  Google Scholar 

  • Tanaka M., Kuei C. W., Nagashima Y and Taguchi T. (1988) Application of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54, 1409–1414.

    Article  CAS  Google Scholar 

  • Viollier E., Inglett P. W., Hunter K., Roychoudhury A. N. and Van Cappellen P. (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry 15, 785–790.

    Article  CAS  Google Scholar 

  • Virdi J., Sivakami S., Shahani S., Suthar A. C., Banavalikar M. M. and Biyani M. K. (2003) Antihyperglycemic effects of three extracts from Momordica charantia. Journal of Ethnopharmacology 88, 107–111.

    Article  Google Scholar 

  • Williams G. M. and Iatropoulos M. J. (1997) Antiocarci-nogenic effects of synthetic phenolic antioxidants, pp. 341–350. In Oxidants, Antioxidants and Free Radicals (edited by S. I. Baskin and H. Salem). Taylor and Francis, New York, USA.

    Google Scholar 

  • Yen G.-C. and Wu J.-Y (1999) Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chemistry 65, 375–379. doi:10.1016/S0308-8146(98)00239-8.

    Article  CAS  Google Scholar 

  • Young I. S. and Woodside J. V. (2001) Antioxidants in health and disease. Journal of Clinical Pathology 54, 176–186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandikere Ramaiah Sridhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambarish, C.N., Sridhar, K.R. Pill-millipedes (Arthrosphaera: Sphaerotheriida) of the Western Ghats: a future source of antioxidants?. Int J Trop Insect Sci 35, 117–124 (2015). https://doi.org/10.1017/S1742758415000132

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758415000132

Key words

Navigation