Skip to main content
Log in

Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

House flies (Musca domestica L.) are key pests of poultry and are managed worldwide with a variety of insecticides. However, extensive and injudicious use of insecticides has led to the development of resistance in many insect pests. Insecticide mixtures can increase the efficacy of the product and/or delay the development of resistance, thus making them a useful tool for pest control. In addition to their efficacy when used alone, mixtures of emamectin benzoate, spinosad or nitenpyram with either lambda-cyhalothrin or profenofos were assessed against a susceptible strain of house flies collected from poultry farms. The analysis revealed that combination indices for lambda-cyhalothrin/emamectin benzoate and lambda-cyhalothrin/spinosad mixtures were significantly >1, indicating an antagonistic effect. In contrast, the indices for all the tested ratios of lambda-cyhalothrin/nitenpyram were significantly < 1, suggesting a synergistic effect. For mixtures containing profenofos, combination indices varied significantly. For example, synergism was observed in a 1:1 mixture containing lambda-cyhalothrin and emamectin benzoate, but antagonism occurred when a higher proportion of the latter insecticide was used. Conversely, synergism in a mixture containing profenofos and nitenpyram was observed only when a lower proportion of the second insecticide was used. The present results suggest that ideal insecticide mixtures must be empirically determined and alternative strategies such as mosaics, rotations and cultural control should be considered for the management of the house fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas N., Khan H. A. A. and Shad S. A. (2014a) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitology Research 113, 1343–1352.

    Article  Google Scholar 

  • Abbas N., Khan H. A. A. and Shad S. A. (2014b) Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23, 791–801.

    Article  CAS  Google Scholar 

  • Abbas N., Shad S. A., Razaq M., Waheed A. and Aslam M. (2014c) Resistance of Spodoptera litura (Lepidoptera: Noctuidae) to profenofos: relative fitness and cross resistance. Crop Protection 58, 49–54.

    Article  CAS  Google Scholar 

  • Acevedo G. R., Zapater M. and Toloza A. C. (2009) Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitology Research 105, 489–493.

    Article  Google Scholar 

  • Afzal M. B. S., Shad S. A., Abbas N., Ayyaz M. and Walker W. B. (2015) Cross-resistance, the stability of acet-amiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Management Science 71, 151–158.

    Article  CAS  Google Scholar 

  • Ahmad M. (2004) Potentiation/antagonism of delta-methrin and Cypermethrins with organophosphate insecticides in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 80, 31–42.

    Article  CAS  Google Scholar 

  • Ahmad M. (2007) Potentiation/antagonism of pyre-throids with organophosphate insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology 100, 886–893.

    Article  CAS  Google Scholar 

  • Ahmad M. (2009) Observed potentiation between pyrethroid and organophosphorus insecticides for the management of Spodoptera litura (Lepidoptera: Noctuidae). Crop Protection 28, 264–268.

    Article  CAS  Google Scholar 

  • Ahmad M., Saleem M. A. and Sayyed A. H. (2009) Efficacy of insecticide mixtures against pyrethroid- and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 65, 266–274.

    Article  CAS  Google Scholar 

  • Basit M., Saeed S., Saleem M. A., Denholm I. and Shah M. (2013) Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology 106, 1414–1422.

    Article  CAS  Google Scholar 

  • Bell H.A., Robinson K. A. and Weaver R. J. (2010) First report of cyromazine resistance in a population of UK house fly (Musca domestica) associated with intensive livestock production. Pest Management Science 66, 693–695.

    Article  CAS  Google Scholar 

  • Chou T.-C. and Talalay P. (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation 22, 27–55.

    Article  CAS  Google Scholar 

  • Corbel V., Raymond M., Chandre F., Darriet F. and Hougard J.-M. (2004) Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Management Science 60, 375–380.

    Article  CAS  Google Scholar 

  • Curtis C. (1985) Theoretical models of the use of insecticide mixtures for the management of resistance. Bulletin of Entomological Research 75, 259–266.

    Article  CAS  Google Scholar 

  • Denholm I., Pickett J. and Devonshire A. (1998) Insecticide resistance: from mechanisms to management. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 353, 1673–1795.

    Article  Google Scholar 

  • Faheem U., Nazir T., Saleem M., Yasin M. and Bakhsh M. (2013) Status of insecticide resistance in Helicoverpa armigera (Hübner) in southern Punjab, Pakistan. Sarhad Journal of Agriculture 29, 563–572.

    Google Scholar 

  • Finney D. (1971) A statistical treatment of the sigmoid response curve. In Probit Analysis, 3rd edn. Cambridge University Press, London. 333 pp.

    Google Scholar 

  • Förster M., Klimpel S., Mehlhorn H., Sievert K., Messler S. and Pfeffer K. (2007) Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitology Research 101, 243–246.

    Article  Google Scholar 

  • Hemingway J. and Ranson H. (2000) Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45, 371–391.

    Article  CAS  Google Scholar 

  • Islam M. Z. and Khalequzzaman M. (2002) Potentiation of malathion by other insecticides against adult housefly. Pakistan Journal of Biological Sciences 5, 299–302.

    Article  Google Scholar 

  • Kaufman P. E., Gerry A. C., Rutz D. A. and Scott J. G. (2006) Monitoring susceptibility of house flies (Musca domestica L.) in the United States to imidacloprid. Journal of Agricultural and Urban Entomology 23, 195–200.

    CAS  Google Scholar 

  • Kaufman P. E., Scott J. G. and Rutz D. A. (2001) Monitoring insecticide resistance in house flies (Diptera: Muscidae) from New York dairies. Pest Management Science 57, 514–521.

    Article  CAS  Google Scholar 

  • Khan H. A. A., Akram W. and Shad S. A. (2014) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Tropica 130, 148–154.

    Article  CAS  Google Scholar 

  • Khan H. A. A., Akram W. and Shad S. A. (2013a) Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology 22, 522–527.

    Article  CAS  Google Scholar 

  • Khan H. A. A., Akram W., Shad S. A. and Lee J.-J. (2013b) Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. PloS One 8, e60929.

    Article  CAS  Google Scholar 

  • Kristensen M., Spencer A. G. and Jespersen J. B. (2001) The status and development of insecticide resistance in Danish populations of the housefly Musca domestica L. Pest Management Science 57, 82–89.

    Article  CAS  Google Scholar 

  • Learmount J., Chapman P. and MacNicoll A. (2002) Impact of an insecticide resistance strategy for house fly (Diptera: Muscidae) control in intensive animal units in the United Kingdom. Journal of Economic Entomology 95, 1245–1250.

    Article  CAS  Google Scholar 

  • Litchfield J. T. and Wilcoxon E. (1949) A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96, 99–113.

    CAS  PubMed  Google Scholar 

  • Marçon P. C. R. G., Thomas G. D., Siegfried B. D., Campbell J. B. and Skoda S. R. (2003) Resistance status of house flies (Diptera: Muscidae) from southeastern Nebraska beef cattle feedlots to selected insecticides. Journal of Economic Entomology 96, 1016–1020.

    Article  Google Scholar 

  • Martin T., Ochou O. G., Vaissayre M. and Fournier D. (2003) Organophosphorus insecticides synergize pyr-ethroids in the resistant strain of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctui-dae) from West Africa. Journal of Economic Entomology 96, 468–474.

    Article  CAS  Google Scholar 

  • Nauen R. (2007) Insecticide resistance in disease vectors of public health importance. Pest Management Science 63, 628–633.

    Article  CAS  Google Scholar 

  • Nauen R., Elbert A., McCaffery A., Slater R. and Sparks T. (2012) IRAC: insecticide resistance, and mode of action classification of insecticides. In Modern Crop Protection Compounds, Vol. 1–3 (edited by W. Kramer, U. Schirmer, P. Jeschke and M. Witschel). Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.

    Chapter  Google Scholar 

  • Sayyed A. H., Saeed S., Noor-Ul-Ane M. and Crickmore N. (2008) Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology 101, 1658–1666.

    Article  CAS  Google Scholar 

  • Scott J. G., Alefantis T G., Kaufman P. E. and Rutz D. A. (2000) Insecticide resistance in house flies from caged-layer poultry facilities. Pest Management Science 56, 147–153.

    Article  CAS  Google Scholar 

  • Tabashnik B. E. (1989) Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. Journal of Economic Entomology 82, 1263–1269.

    Article  CAS  Google Scholar 

  • Ware G. W. (2000) The Pesticide Book, 5th edn. Thomson Publications, Fresno, CA, USA.

    Google Scholar 

  • Zaka S. M., Abbas N., Shad S. A. and Shah R. M. (2014) Effect of emamectin benzoate on life history traits and relative fitness of Spodoptera litura (Lepidoptera: Noctuidae). Phytoparasitica 42, 493–501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naeem Abbas or Sarfraz Ali Shad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, N., Crickmore, N. & Shad, S.A. Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm. Int J Trop Insect Sci 35, 48–53 (2015). https://doi.org/10.1017/S1742758414000575

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758414000575

Key words

Navigation