Skip to main content
Log in

Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae)

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

In the present study, the synergistic effects of Beauveria bassiana (Bals.-Criv. Vuill.) (isolate Bb11) and Bacillus thuringiensis var. kurstaki (Berliner) with neem oil were evaluated in three agroecological zones in Bénin. Four bioinsecticide treatments (neem oil, neem oil and B. bassiana used separately for different target pests, neem oil mixed with B. bassiana and neem oil mixed with B. thuringiensis) were compared with a calendar-based treatment using synthetic insecticides and a control without insecticides. The bioinsecticide treatments were less effective than the calendar-based treatment at controlling cotton pests. There was no difference in yields and the number of damaged bolls in plots under treatments with the four bioinsecticide formulations, suggesting an absence of synergy between neem oil and B. bassiana and neem oil and B. thuringiensis. The numbers of natural enemies in all the bioinsecticide treatment plots and the control plots were similar and higher than those in the calendar-based treatment plots. The highest yield and profitability were obtained with the calendar-based treatment. Screening the compatibility of plant-based products and biopesticides through bioassays is essential for a successful application of their combinations in any integrated pest management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed S., Saleem M. A. and Rauf I. (2002) Field efficacy of some bioinsecticides against maize and Jowar stem borer, Chilo partellus (Pyralidae: Lepidoptera). International Journal of Agriculture and Biology 4, 332–334.

    Google Scholar 

  • Casida J. E. and Quistad G. B. (1998) Golden age of insecticide research: past, present, or future? Annual Review of Entomology 43, 1–16.

    Article  CAS  Google Scholar 

  • CRA-CF (2002) Rapport de Campagne 2001–2002. Centre de Recherche Agricole Coton et Fibre, MAEP, Réblique du Bénin. 188 pp.

    Google Scholar 

  • Croft B. A. and Brown A. W. A. (1975) Responses of arthropod natural enemies to insecticides. Annual Review of Entomology 20, 285–335.

    Article  CAS  Google Scholar 

  • de Faria M. R. and Wraight S. P. (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43, 237–256.

    Article  Google Scholar 

  • Depieri R. A., Martinez S. S. and Menezes A. O. Jr (2005) Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology 34, 601–606.

    Article  Google Scholar 

  • Douro Kpindou O. K., Djegui D. A., Glitho I. A. and Tamò M. (2011) Dose transfer of an oil-based formulation of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) sprays to cotton bollworm in an arena trial. International Journal of Tropical Insect Science 31, 262–268.

    Article  Google Scholar 

  • Elzen G. W. and James R. R. (2002) Responses of Plutella xylostella and Coleomegilla maculata to selected insecticides in a residual insecticide bioassay. Southwestern Entomologist 27, 149–154.

    Google Scholar 

  • Gahukar R. T. (2010) Role and perspective of phytochemicals in pest management in India. Current Science (Bangalore) 98, 897–899.

    CAS  Google Scholar 

  • Glin L. C., Kuiseau J., Thiam A., Vodouhé D. S., Dinham B. and Ferrigno S. (2006) Living with Poison — Problems of Endosulfan in West African Cotton Growing Systems. PAN UK, London.

    Google Scholar 

  • Gouli V. V., Gouli S. Y., Skinner M. and Shternshis M. V. (2009) Effect of the entomopathogenic fungi on mortality and injury level of western flower thrips, Frankliniella occidentalis. Archives of Phytopathology and Plant Protection 42, 118–123.

    Article  CAS  Google Scholar 

  • Haroon W. M., Pages C., Vassal J.-M., Abdalla A. M., Luong-Skovmand M.-H. and Lecoq M. (2011) Laboratory and field investigation of a mixture of Metarhizium acridum and neem seed oil against the tree locust Anacridium melanorhodon melanorhodon (Orthoptera: Acrididae). Biocontrol Science and Technology 21, 353–366.

    Article  Google Scholar 

  • Inglis G. D., Goettel M. S., Butt T. M. and Strasser H. (2001) Use of hyphomycetous fungi for managing insect pests, pp. 23–69. In Fungi as Biocontrol Agents: Progress, Problems and Potential (edited by T. M. Butt, C. Jackson and N. Magan). Cabi Publishing, Wallingford, UK.

    Chapter  Google Scholar 

  • Islam Md. T., Castle S. J. and Ren S. (2010) Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata 134, 28–34.

    Article  Google Scholar 

  • Isman M. B. (2000) Biopesticides based on phytochemicals, pp. 1–12. In Phytochemical Biopesticides (edited by O. Koul and D. S. Dhaliwal). CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Jena M. (2005) Integrated pest management with botanical pesticides in rice with emphasis on neem products. Oryza 42, 124–128.

    Google Scholar 

  • Joseph R. A., Premila K., Nisha V. G., Rajendran S. and Mohan S. S. (2010) Safety of neem products to tetragnathid spiders in rice ecosystem. Journal of Biopesticides 3, 88–89.

    Google Scholar 

  • Koul O., Isman M. B. and Ketkar C. (1990) Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany 68, 1–11.

    Article  CAS  Google Scholar 

  • Leskovar D. I. and Boales A. K. (1996) Azadirachtin: potential use for controlling lepidopterous insects and increasing marketability of cabbage. HortScience 31, 405–409.

    Article  CAS  Google Scholar 

  • Mancini F., Termorshuizen A. J., Jiggins J. L. S. and van Bruggen A. H. C. (2008) Increasing the environmental and social sustainability of cotton farming through farmer education in Andhra Pradesh, India. Agricultural Systems 96, 16–25.

    Article  Google Scholar 

  • Matthews G. (1996) The importance of scouting in cotton IPM. Crop Protection 15, 369–374.

    Article  Google Scholar 

  • Mohan M. C., Reddy N. P., Devi U. K., Kongara R. and Sharma H. C. (2007) Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology 17, 1059–1069.

    Article  Google Scholar 

  • Niassy S., Maniania N. K., Subramanian S., Gitonga M. L., Maranga R., Obonyo A. B. and Ekesi S. (2012) Compatibility of Metarhizium anisopliae isolate ICIPE 69 with agrochemicals used in French bean production. International Journal of Pest Management 58, 131–137.

    Article  Google Scholar 

  • Patel M. C. and Vyas R. N. (2000) Field bioefficacy of Bacillus thuringiensis var kurstaki and neem based formulations against cotton bollworms. Indian Journal of Plant Protection 28, 78–83.

    Google Scholar 

  • Peltzer R. and Röttger D. (2013) Cotton Sector Organisation Models and their Impact on Farmer’s Productivity and Income. Discussion Paper 4/2013, Deutsches Institut füwicklungspolitik (DIE), Bonn. ISBN: 978-3-88985-627-2.

    Google Scholar 

  • Pimentel D. and Edwards C. A. (1982) Pesticides and ecosystems. BioScience 32, 595–600.

    Article  CAS  Google Scholar 

  • Ravensberg W. J. (2011) Progress in Biological Control: Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Springer Science, Dordrecht, The Netherlands. 386 pp.

    Google Scholar 

  • Sakthivel N., Balakrishna R., Ravikumar J., Samuthiravelu P., Isaiarasu L. and Qadri S. M. H. (2012) Efficacy of botanicals against jassid Empoasca flavescens F. (Homoptera: Cicadellidae) on mulberry and their biosafety to natural enemies. Journal of Biopesticides 5, 246–249.

    Google Scholar 

  • Sakthivel N. and Qadri S. M. H. (2010) Impact of insecticides and botanicals on population build-up of predatory coccinellids in mulberry. Journal of Biopesticides 3, 85–87.

    CAS  Google Scholar 

  • Salako E. A., Anjorin S. T., Garba C. D. and Omolohunnu E. B. (2008) A review of neem biopesticide utilization and challenges in Central Northern Nigeria. African Journal of Biotechnology 7, 4758–4764.

    CAS  Google Scholar 

  • SAS Institute (2005) SAS/STAT 9.1 Production GLIMMIX Procedure for Windows. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • Schmutterer H. (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35, 271–297.

    Article  CAS  Google Scholar 

  • Schmutterer H. and Singh R. P. (2002) List of insect pests susceptible to neem products, pp. 411–456. In The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants (edited by H. Schmutterer), 2nd ed. Neem Foundation, Mumbai, India.

    Google Scholar 

  • Shah F. A., Gaffney M., Ansari M., Prasad M. and Butt T. (2008) Neem seed cake enhances the efficacy of the insect pathogenic fungus, Metarhizium anisopliae, for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biological Control 44, 111–115.

    Article  Google Scholar 

  • Sinzogan A. A. C., Kossou D. K., Atachi P. and van Huis A. (2006) Participatory evaluation of synthetic and botanical pesticide mixtures for cotton bollworm control. International Journal of Tropical Insect Science 26, 246–255.

    Article  CAS  Google Scholar 

  • Tavares W. S., Costa M. A., Cruz I., Silveira R. D., Serrão J. E. and Zanuncio J. C. (2010) Selective effects of natural and synthetic insecticides on mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its predator Eriopis connexa (Coleoptera: Coccinellidae). Journal of Environmental Science and Health B 45, 557–561.

    Article  CAS  Google Scholar 

  • Togbé C. E. (2013) Cotton in Bénin: governance and pest management. PhD thesis, Wageningen University, The Netherlands..

    Google Scholar 

  • Ton P., Tovignan S. and Vodouhe S. D. (2000) Endosulfan deaths and poisonings in Bénin. Pesticides News 47, 12–14.

    Google Scholar 

  • Tovignan S., Vodouhe S. and Dinham B. (2001) Cotton pesticides cause more deaths in Bénin. Pesticides News 52, 12–14.

    Google Scholar 

  • Verghese A., Nagaraju D. K., Vasudev V., Kamala Jayanthi P. D., Madhura H. S. and Stonehouse J. M. (2005) Effectiveness of insecticides of synthetic, plant and animal origin against the mango stone weevil, Sternochetus mangiferae (Fabricius) (Coleoptera: Curculionidae). Crop Protection 24, 633–636.

    Article  CAS  Google Scholar 

  • Vimala-Devi P. S. and Prasad Y. G. (1996) Compatibility of oils and antifeedants of plant origin with the entomopathogenic fungus Nomuraea rileyi. Journal of Invertebrate Pathology 68, 91–93.

    Article  Google Scholar 

  • Wilson L. J. (1993) Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. Journal of Economic Entomology 86, 566–585.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Codjo Euloge Togbé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Togbé, C.E., Zannou, E., Gbèhounou, G. et al. Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae). Int J Trop Insect Sci 34, 248–259 (2014). https://doi.org/10.1017/S1742758414000447

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758414000447

Key words

Navigation