Skip to main content
Log in

Interaction between the aphid parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae) and its hyperparasitoid Syrphophagus africanus (Hymenoptera: Encyrtidae)

  • Research Paper
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The interactions between the cowpea aphid Aphis craccivora Koch, its parasitoid Lysiphlebus testaceipes Cresson and hyperparasitoid Syrphophagus africanus Gahan were assessed in the laboratory. Host age preference for hyperparasitism was evaluated using parasitized aphids of different ages (i.e. 1, 2, 3, 4, 5 and 6 days old and mixed ages). We studied the influence of the hyperparasitoid on the parasitism efficiency of L. testaceipes, the effect of host age on some biological parameters of S. africanus, and its hyperparasitism based on aggregated or isolated mummies. The presence of S. africanus significantly affected aphid parasitism by L. testaceipes (21.2 ± 3.6 vs 36.6 ± 4.5%). Except for 1-day-old hosts, S. africanus successfully parasitized hosts of all tested ages, with preference for newly formed mummies (39.16 ± 3.31% parasitism in 5-day-old hosts). The development time of immature stages of the S. africanus progeny was significantly affected by host age. The sex ratio of the hyperparasitoid progeny was largely female biased and did not vary with host age. Syrphophagus africanus females from live parasitized aphids produced more offspring (36.55 ± 6.28 vs 25.00 ± 7.16) and lived longer (21.09 ± 1.57 vs 10.88 ± 2.31 days) than those from mummy hosts. Hyperparasitism rates were higher on aggregated mummies than on dispersed ones (36.00 ± 2.86 vs 20.66 ± 4.00%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agboka K., Tounou A. K., Al-Moaalem R., Poehling H. M., Raupach K. and Borgemeister C. (2004) Life-table study of Anagrus atomus, an egg parasitoid of the green leafhopper Empoasca decipiens, at four different temperatures. Biocontrol 49, 261–275.

    Article  Google Scholar 

  • Ayal Y. and Green R. F. (1993) Optimal egg distribution among host patches for parasitoids subject to attack by hyperparasitoids. The American Naturalist 141, 120–138.

    Article  CAS  PubMed  Google Scholar 

  • Barahoei H., Massoud S. and Mehrparvar M. (2011) Morphometric differentiation of five biotypes of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae) in Iran. Zootaxa 2745, 43–52.

    Article  Google Scholar 

  • Barbosa P. and Frongillo E. A. (1979) Host parasitoid interactions affecting reproduction and oviposition by Brachymeria intermedia (Hymenoptera: Chalcididae). Entomophaga 24, 139–143.

    Article  Google Scholar 

  • Barbosa P., Martinat P. and Bennett R. (1986) Consequences of maternal age and host deprivation on the production and development of Brachymeria intermedia (Nees) and the mortality of its gypsy moth (Lymantria dispar) host. Zeitschrift fuer Angewandte Entomologie 1001, 215–223.

    Google Scholar 

  • Boenisch A., Petersen G. and Wyss U. (1997) Influence of the hyperparasitoid Dendrocerus carpenteri on the reproduction of the grain aphid Sitobion avenae. Ecological Entomology 22, 1–6.

    Article  Google Scholar 

  • Bokonon-Ganta A. H., Neuenschwander P., van Alphen J. J. M. and Vos M. (1995) Host stage selection and sex allocation by Anagyrus mangicola (Hymenoptera: Encyrtidae), a parasitoid of mango mealybug, Rastrococcus invadens (Homoptera: Pseudococcidae). Biological Control 5, 479–486.

    Article  Google Scholar 

  • Briggs C. J. (1993) Competition among parasitoid species on a stage-structured host and its effect on host suppression. The American Naturalist 141, 372–397.

    Article  Google Scholar 

  • Brodeur J. (2000) Host specificity and trophic relationships of hyperparasitoids, pp. 139–162. In Parasite Population Biology (edited by M. Hochberg and A. R. Ives). Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Brodeur J. and Rosenheim J. A. (2000) Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata 97, 93–108.

    Article  Google Scholar 

  • Brodeur J., Geervliet J. B. F. and Vet L. E. M. (1996) The role of host species, age and defensive behaviour on ovipositional decisions in a solitary specialist and a gregarious generalist parasitoid (Cotesia species). Entomologia Experimentalis et Applicata 81, 125–132.

    Article  Google Scholar 

  • Buitenhuis R. (2004) A comparative study of the life history and foraging behaviour of aphid hyperparasitoids. PhD dissertation, Université Laval, Québec. 172 pp.

    Google Scholar 

  • Chen K. R., Xu Z. Y., Zhang Z. Y., Fang X. P. and Yan L. Y. (1999) Biological characters and sequence analysis of coat protein gene of Chinese strains of peanut stripe virus (PStV). Chinese Journal of Oil Crop Sciences 21, 55–59.

    Google Scholar 

  • CIRAD (2007) Les criquets ravageurs: Dynamique des populations. Available at: http://locust.cirad.fr/tout_savoir/dynpop/dynampop (accessed December 2009).

    Google Scholar 

  • Coceano P. G., Peressini S. and Bianchi G. L. (1998) The role of winged aphid species in the natural transmission of soybean mosaic potyvirus to soybean in North-east Italy. Phytopathologia Mediterranea 37, 111–118.

    Google Scholar 

  • Colfer R. G. and Rosenheim J. A. (2001) Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126, 292–304.

    Article  CAS  PubMed  Google Scholar 

  • Couture I. (1997) Susceptibilité des parasitoïdes Aphidius nigripes (Ashmead) et Praon simulans (Provancher) à l’hyperparasitoïde Asaphes suspensus. Mémoire MSc, Université Laval, Canada. 78 pp.

    Google Scholar 

  • Dogramaci M., Mayo Z. B., Wright R. J. and Reese J. C. (2004) Tritrophic interaction of parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae), greenbug, Schizaphis granimum (Homoptera: Aphididae) and greenbug resistant sorghum hybrids. Journal of Economic Entomology 98, 202–205.

    Article  Google Scholar 

  • Gerling D., Roitberg B. D. and Mackauer M. (1990) Instarspecific defense of the pea aphid, Acyrthosiphon pisum: influence on oviposition success of the parasite Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Insect Behavior 3, 501–514.

    Article  Google Scholar 

  • Godfray H. C. J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey. 473 pp.

    Google Scholar 

  • Goubault M., Krespi L., Boivin G., Poinsot D., Nenon J.-P. and Cortesero A. M. (2004) Intraspecific variations in host discrimination behavior in the pupal parasitoid Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae). Environmental Entomology 3, 362–369.

    Article  Google Scholar 

  • Grasswitz T. R. and Reese B. D. (1998) Biology and host selection behaviour of the aphid hyperparasitoid Alloxysta victrix in association with the primary parasitoid Aphidius colemani and the host aphid Myzus persicae. Biocontrol 43, 261–271.

    Article  Google Scholar 

  • Gutierrez A. P. and van den Bosch R. (1970) Studies on host selection and host specificity of the aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae): 2. The bionomics of Charips victrix. Annals of the Entomological Society of America 63, 1355–1360.

    Article  Google Scholar 

  • Harvey J. A. and Thompson D. J. (1995) Host behaviour and its influence on foraging and acceptance by solitary parasitoid wasps. Entomophaga 40, 193–210.

    Article  Google Scholar 

  • Harvey J. A., Bezember T. M., Elzinga J. A. and Strand M. R. (2004) Development of the solitary endoparasitoid Microplitis demolitor: host quality does not increase with host age and size. Ecological Entomology 29, 35–43.

    Article  Google Scholar 

  • Heng-Moss T, Baxendale F. and Riordan T. (2001) Interactions between the parasitoid Rhopus nigroclavatus (Ashmead) (Hymenoptera: Encyrtidae) and its mealybug hosts Tridiscus sporoboli (Cockerell) and Trionymus sp. (Homoptera: Pseudococcidae). Biological Control 22, 201–206.

    Article  Google Scholar 

  • Hoffer A. and Starý P. (1970) A review of biologies of Palearctic Aphidencyrtus species (Hym., Chalcidoidea, Encyrtidae). Studia Entomologica Forestalia 1, 81–95.

    Google Scholar 

  • Hofsvang B. T. and Hagvar E. B. (1991) Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News and Information 12, 13–41.

    Google Scholar 

  • Höller C., Borgemeister C., Haardt H. and Powell W. (1993) The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field data. Journal of Animal Ecology 62, 12–21.

    Article  Google Scholar 

  • Horn D. J. (1989) Secondary parasitism and population dynamics of aphid parasitoids (Hymenoptera: Aphidiidae). Journal of the Kansas Entomological Society 62, 203–210.

    Google Scholar 

  • Hufbauer R. A. and Via S. (1999) Evolution of an aphid-parasitoid interaction: variation in resistance to parasitism among aphid populations specialized on different plants. Evolution 53, 1435–1445.

    Article  PubMed  Google Scholar 

  • Islam W. (1994) Effect of host age on rate of development of Dinarmus basalis Rond. (Hymenoptera: Pteromalidae). Journal of Applied Entomology 118, 392–398.

    Article  Google Scholar 

  • Jackai L. E. N. and Daoust R. A. (1986) Insect pests of cowpeas. Annual Review of Entomology 31, 95–119.

    Article  Google Scholar 

  • Jones D. B., Giles K. L., Berberet R. C., Royer T. A., Elliott N. C. and Payton M. E. (2003) Functional responses of an introduced parasitoid and an indigenous parasitoid on greenbug at four temperatures. Environmental Entomology 32, 425–432.

    Article  Google Scholar 

  • Kaneko S. (2002) Aphid-attending ants increase the number of emerging adults of the aphid’s primary parasitoid and hyperparasitoids by repelling intraguild predators. Entomological Science 5, 131–146.

    Google Scholar 

  • Kanuck M. J. and Sullivan D. J. (1992) Ovipositional behaviour and larval development of Aphidencyrtus aphidivorus (Hymenoptera: Encyrtidae), an aphid hyperparasitoid. Journal of New York Entomology Society 100, 527–532.

    Google Scholar 

  • Karungi J., Adipala E., Ogenga-Latigo M. W., Kyamanywa S., Oyobo N. and Jackai L. E. N. (2000) Pest management in cowpea. Part 2. Integrating planting time, plant density and insecticide application for management of cowpea field insect pests in eastern Uganda. Crop Protection 19, 237–245.

    Article  Google Scholar 

  • Lauzière I., Brodeur J. and Perez-Lachaud G. (2001) Host stage selection and suitability in Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae), a parasitoid of the coffee berry borer. Biological Control 21, 128–133.

    Article  Google Scholar 

  • Liepert C. and Dettner K. (1993) Recognition of aphid parasitoids by honeydew-collecting ants: the role of cuticular lipids in a chemical mimicry system. Journal of Chemical Ecology 19, 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  • Liepert C. and Dettner K. (1996) Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. Journal of Chemical Ecology 22, 695–707.

    Article  CAS  PubMed  Google Scholar 

  • Luck R. F., Messenger P. S. and Barbieri J. (1981) The influence of hyperparasitism on the performance of biological control agents, pp. 34–43. In The Role of Hyperparasitism in Biological Control: A Symposium (edited by D. Rosen). Division of Agricultural Sciences, University of California, Berkeley, California.

    Google Scholar 

  • Mackauer M. and Völkl W. (1993) Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact? Oecologia 94, 339–350.

    Article  CAS  PubMed  Google Scholar 

  • Mackauer M. and Völkl W. (2005) Sex ratio shift caused by hyperparasitism in the solitary parasitoid Lysiphlebus hirticornis (Hymenoptera: Braconidae: Aphidiidae). European Journal of Entomology 102, 475–481.

    Article  Google Scholar 

  • Matin S. B., Sahragard A. and Rasoolian G. (2009) Some biological parameters of Lysiphlebus fabarum (Hymenoptera: Aphidiidae), a parasitoid of Aphis fabae (Homoptera: Aphidiidae) under labaratory conditions. Munis Entomology and Zoology 4, 193–200.

    Google Scholar 

  • May R. M. and Hassell M. P. (1981) The dynamics of multiparasitoid — host interactions. The American Naturalist 117, 234–261.

    Article  Google Scholar 

  • Mertins J. W. (1985) Hyperparasitoids from pea aphid mummies, Acyrthosiphon pisum (Homoptera: Aphididae), in North America. Annals of the Entomological Society of America 78, 186–195.

    Article  Google Scholar 

  • Messing R. H. and Klungness L. M. (2001) A two-year survey of the melon aphid, Aphis gossypii Glover, on crop plants in Hawaii. Proceedings of the Hawaiian Entomological Society 35, 91–101.

    Google Scholar 

  • Müller C. B., Adriaanse I. C. T., Belshaw R. and Godfray H. C. J. (1999) The structure of aphid — parasitoid community. Journal of Animal Ecology 68, 346–370.

    Article  Google Scholar 

  • Muratori F., Le Ralec A., Lognay G. and Hance T. (2006) Epicuticular factors involved in host recognition for the aphid parasitoid Aphidius rhopalosiphi. Journal of Chemical Ecology 32, 579–593.

    Article  CAS  PubMed  Google Scholar 

  • Nufio C. R. and Papaj D. R. (2001) Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata 99, 273–293.

    Article  Google Scholar 

  • Obopile M. (2006) Economic threshold and injury levels for control of cowpea aphid, Aphis craccivora Linnaeus (Homoptera: Aphididae) on cowpea. African Plant Protection 12, 111–115.

    Google Scholar 

  • Ofuya I. I. (1987) A population explosion of Aphis craccivora Koch (Homoptera: Aphididae) in cowpeas protected with Cypermethrin. PAO Plant Protection Bulletin 35, 75–77.

    Google Scholar 

  • Oliver K. M., Russell J. A., Moran N. and Hunter M. S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the USA 100, 1803–1807.

    Article  CAS  PubMed  Google Scholar 

  • Otto M. and Mackauer M. (1998) The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri: influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364.

    Article  PubMed  Google Scholar 

  • Petersen G. (2000) Signalstoffe in der innerartlichen Kommunikation des Hyperparasitoiden Alloxysta victrix (Hymenoptera: Cynipidae) und ihre Wirkung auf den Primärparasitoiden Aphidius uzbekistanicus und die große Getreideblattlaus Sitobion avenae. PhD thesis, Christian-Albrechts University, Kiel, Germany. 123 pp.

    Google Scholar 

  • Pettersson J., Karunaratne S., Ahmed E. and Kumar V. (1998) The cowpea aphid, Aphis craccivora, host plant odours and pheromones. Entomologia Experimentalis et Applicata 88, 177–184.

    Article  Google Scholar 

  • Pimentel D., Acquay H., Biltdnen M., Rice P., Silva M., Nelson J., Lipner V., Giordano S., Horowitz A. and D’Amore M. (1992) Environmental and economic costs of pesticide use. BioScience 42, 750–760.

    Article  Google Scholar 

  • Pons X., Lumbierres B., Antoni R. and Starý P. (2011) Parasitoid complex of alfalfa aphids in an IPM intensive crop system in northern Catalonia. Journal of Pest Science 84, 437–445.

    Article  Google Scholar 

  • Rakhshani E., Talebi A. A., Kavallieratos N. G., Rezwani A., Manzari S. and Zeljko T. (2005) Parasitoid complex (Hymenoptera: Braconidae: Aphidiinae) of Aphis craccivora Koch (Hemiptera: Aphidoidea) in Iran. Journal of Pesticide Science 78, 193–198.

    Google Scholar 

  • Rasekh A., Michaud J. P., Kharazi-Pakdel A. and Allahyari H. (2010) Ant mimicry by an aphid parasitoid, Lysiphlebus fabarum. Journal of Insect Science 10, 126. insectscienceorg/10.126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues S. M. M. and Bueno V. H. P. (2001) Parasitism rates of Lysiphlebus testaceipes Cresson (Hymenoptera: Aphidiidae) on Schizaphis graminum (Rond.) and Aphis gossypii Glover (Homoptera: Aphididae). Neotropical Entomology 30, 625–629.

    Article  Google Scholar 

  • Saethre, M.-G., Godonou, I., Hofsvang, T., Tepa-Yotto, G. T., and James, B. (2011) Aphids and their natural enemies in vegetable agroecosystems in Benin. International Journal of Tropical Insect Science 31, 103–117.

    Article  Google Scholar 

  • Salt G. and van den Bosch R. (1967) The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an ichneumon wasp. Journal of Invertebrate Pathology 9, 164–177.

    Article  Google Scholar 

  • Sanders D. and van Veen R. J. R. (2010) The impact of an ant-aphid mutualism on the functional composition of the secondary parasitoid community. Ecological Entomology 35, 704–710.

    Article  Google Scholar 

  • Shi D. S. (1987) Studies on the parasitoids of cotton aphid. III. Bionomics of Aphidencyrtus aphidivorus (Mayr), a hyperparasitoid of cotton aphid (in Chinese). Contributions from the Shangai Institute of Entomology 6, 35–41.

    Google Scholar 

  • Singh S. R. and Jackai L. E. N. (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance, and potential for control, pp. 217–231. In Cowpea Research, Production and Utilization (edited by S. R. Singh and K. O. Rachie). Wiley, Chichester.

    Google Scholar 

  • Snyder W. E. and Ives A. R. (2003) Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107.

    Article  Google Scholar 

  • Star`y P. (1976) Aphid Parasites (Hymenoptera, Aphidiidae) of the Mediterranean Area. Vol. 86. Springer Science + Business Media, Heidelberg. 95 pp.

    Book  Google Scholar 

  • Stephens D. W. and Krebs J. R. (1986) Foraging Theory. Princeton University Press, Princeton, New Jersey. 262 pp.

    Google Scholar 

  • Sullivan D. J. (1987) Insect hyperparasitism. Annual Review of Entomology 32, 49–70.

    Article  Google Scholar 

  • Sullivan D. J. and van den Bosch R. (1971) Field ecology of the primary parasites and hyperparasites of the potato aphid, Macrosiphum euphorbiae, in the East San Francisco Bay area. Annals of the Entomology Society of America 64, 389–394.

    Article  Google Scholar 

  • Sullivan D. J. and Völkl W. (1999) Hyperparasitism: multitrophic ecology and behaviour. Annual Review of Entomology 44, 291–315.

    Article  CAS  PubMed  Google Scholar 

  • Tian X., Sabbagh G. J., Cuperus G. W. and Gregory M. (1996) Evaluating potential environmental impact of insecticide applications in a boll weevil eradication program. American Water Resources Association 32, 1027–1037.

    Article  CAS  Google Scholar 

  • Ueno T. (1997) Host age preference and sex allocation in the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America 90, 640–645.

    Article  Google Scholar 

  • Ueno T. (1999) Host-size-dependent sex ratio in a parasitoid wasp. Researches on Population Ecology 41, 47–57.

    Article  Google Scholar 

  • van Alphen J. J. M. and Vet L. E. M. (1986) An evolutionary approach to host finding, pp. 23–61. In Insect Parasitoids (edited by J. Waage and D. Great-head). Academic Press, New York.

    Google Scholar 

  • van Baaren J., Landry B. L. and Boivin G. (1999) Sex allocation and larval competition in a superparasitizing solitary egg parasitoid: competing strategies for an optimal sex ratio. Functional Ecology 13, 66–71.

    Article  Google Scholar 

  • Van Driesche R. G. (1983) Meaning of ‘percent parasitism’ in studies of insect parasitoids. Environmental Entomology 12, 1611–1622.

    Article  Google Scholar 

  • van Veen F. J. F., Rajkumar A., Müller C. B. and Godfray H. C. J. (2001) Increased reproduction by pea aphids in the presence of secondary parasitoids. Ecological Entomology 26, 425–429.

    Article  Google Scholar 

  • Völkl W., Kranz P., Weisser W. and Hübner G. (1995) Patch time allocation and resource exploitation in aphid primary parasitoids and hyperparasitoids searching simultaneously within aphid colonies. Journal of Applied Entomology 119, 399–404.

    Article  Google Scholar 

  • Weisser W. W., Houston A. I. and Völkl W. (1994) Foraging strategies in solitary parasitoids: the trade-off between female and offspring mortality risks. Evolutionary Ecology 8, 587–597.

    Article  Google Scholar 

  • Wylie H. G. (1964) Effect of host age on rate of development of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). The Canadian Entomologist 96, 1023–1027.

    Article  Google Scholar 

  • Wylie H. G. (1965) Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). The Canadian Entomologist 97, 326–331.

    Article  Google Scholar 

  • Zanzana K. (2008) Parasitisme de Aphidius sp. (Hymenoptera: Braconidae) sur l’aphide du niébé A. craccivora Koch (Homoptera: Aphididae): effets des stades de développement et de la densité. Mémoire de DIT, Université d’Abomey-Calavi, Benin. 62 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Tamò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganyo, K.K., Tounou, A.K., Agboton, C. et al. Interaction between the aphid parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae) and its hyperparasitoid Syrphophagus africanus (Hymenoptera: Encyrtidae). Int J Trop Insect Sci 32, 45–55 (2012). https://doi.org/10.1017/S1742758412000070

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758412000070

Key words

Navigation