Skip to main content
Log in

Herbivores and Toxic Plants: Evolution of a Menu of Options for Processing Allelochemicals

  • Symposium II: Biotypes, Polymorphism and Co-evolution in Tropical Insects
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Insects have evolved a potpourri of mechanisms for manipulating the allelochemicals that fortify their preferred host plants. A concatenation of physiological and biochemical events frequently follows the ingestion of a toxic natural product and can eventuate in a variety of fates for the compound. A particular allelochemical may be absorbed, metabolized, and sequestered, whereas the fates of concomitant natural products may be very different. Some compounds may be directly excreted in the faeces and their concentration will thus mirror that in the plant. In other cases, selective absorption and sequestration combine to biomagnify minor constituents so that the concentration of these sequestered compounds in insect tissues differs drastically from their concentrations in the host plants.

The acridid Romalea guttata is utilized in this paper as a paradigmatic insect which eclectically processes ingested allelochemicals from a wide range of host plants. This generalist herbivore is eminently suitable as a model because it feeds on plants containing a veritable pharmacopoeia of toxic compounds. The proven sequestrative potential of its defensive glands further qualifies R. guttata as an excellent candidate for determining the fates of toxic phytochemicals. An analysis of this insect’s processing strategies for the compounds ingested after feeding on catnip (Nepeta cataria) reveals that for R. guttata variety is the spice of herbivorous life. The results of this investigation persuasively demonstrate that each insect species—and the phytochemical mixture that it ingests—must be regarded as a unique evolutionary case that constitutes a distinctively idiosyncratic phenomenon.

Résumé

Les insectes ont développé un potpourri de mécanismes pour manipuler les composés qui fortifient leurs plantes préférées. Un enchaînement d’évenements physiologiques et biochimiques découle fréquemment de l’ingestion d’un produit naturel et toxique et peut donner au composé des fortunes diverses. Un composé particulier peut àtre absorbé, transformé par métabolisme, et isolé, alors que les fortunes des produits naturels comcomitants peuvent àtre très différents. Certains composés peuvent àtre excrétés directement dans les fèces et leur concentration correspondra à celui de la plante. Dans les autres cas, l’absorption et l’isolement sélectifs se combinent pour augmenter biologiquement les constituants mineurs de sorte que la concentration des composés isolés dans les tissues de l’insecte différe radicalement de la concentration qui existe dans les plantes préférées. Dans cet article on examine la sauterelle Romalea guttata comme modèle qui utilise éclectiquement les composés ingérés d’un grand choix de plantes préférées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum M. S. (1983) Detoxication, deactivation, and utilization of plant compounds by insects. In Plant Resistance to Insects (Edited by Hedin P. A.), pp. 265–275. ACS Symposium Series, No. 208, American Chemical Society, Washington.

    Chapter  Google Scholar 

  • Blum M. S., Rivier L. and Plowman T. (1981) Fate of cocaine in the lymantriid Eloria noyesi, a predator of Erythroxylum coca. Phytochem. 20, 2499–2500.

    Article  CAS  Google Scholar 

  • Brower L. P., Seiber J. N., Nelson C. J., Lynch S. P., Hoggard M. P. and Cohen J. A. (1984) Plant-determined variation in cardenolide content and thin-layer chro-matography profiles of monarch butterflies, Danaus plexippus reared on milkweed plants in California. 3: Asclepias califomica. J. Chem. Ecol. 10, 1823–1857.

    Article  CAS  Google Scholar 

  • Duffey S. S. (1980) Sequestration of plant natural products by insects. A. Rev. Ent. 25, 447–477.

    Article  CAS  Google Scholar 

  • Duffey S. S. and Blum M. S. (1977) Phenol and guaiacol: Biosynthesis, detoxication, and function in a polydesmid millipede, Oxidus gracilis. Insect Biochem. 7, 57–65.

    Article  CAS  Google Scholar 

  • Duffey S. S. and Scudder G. G. E. (1974) Cardiac glycosides in Oncopeltus fascialus (Dallas) (Hemiptera: Ly-gaeidae)—I. The uptake and distribution of natural cardenolides in the body. Can. J. Zool. 52, 283–290.

    Article  Google Scholar 

  • Eisner T. (1964) Catnip: Its raison d’être. Science 146, 1318–1320.

    Article  CAS  Google Scholar 

  • Eisner T., Hendry L. B., Peakall D. B. and Meinwald J. (1971) 2,5-Dichlorophenol (from ingested herbicide?) in defensive secretion of grasshopper. Science 172, 277–278.

    Article  CAS  Google Scholar 

  • Fraenkel G. S. (1959) The raison d’être of secondary plant substances. Science 129, 1466–1470.

    Article  CAS  Google Scholar 

  • Jones C. G., Hess T. A., Whitman D. W., Silk P. J. and Blum M. S. (1986) Idiosyncratic variation in chemical defenses among individual generalist grasshoppers. J. Chem. Ecol. 12, 749–761.

    Article  CAS  Google Scholar 

  • Jones C. G., Hess T. A., Whitman D. W., Silk P. J. and Blum M. S. (1987) Effects of diet breadth on autogenous chemical defense of a generalist grasshopper. J. Chem. Ecol. 13, 283–297.

    Article  CAS  Google Scholar 

  • Nishio S. (1980) The fates and adaptive significance of cardenolides sequestered by larvae of Danaus plexippus (L.) and Cycnia inopinatus (Hy. Edwards). Ph.D. thesis, University of Georgia.

    Google Scholar 

  • Regnier F. E., Eisenbraun E. J. and Waller G. R. (1967) Nepetalactone and epinepetalactone from Nepeta cataria L. Phytochem. 6, 1271–1280.

    Article  CAS  Google Scholar 

  • Rothschild M. (1972) Secondary plant substances and warning colouration in insects. In Insect/Plant Relationships (Edited by van Emden H.), pp. 59–83. Blackwells, Oxford and London.

    Google Scholar 

  • Rothschild M., Aplin R. T., Cockrum P. A., Edgar J. A., Fairweather P. and Lees R. (1979) Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol. J. Linn. Soc. 12, 305–326.

    Article  Google Scholar 

  • Rothschild M., von Euw J., Reichstein T., Smith D. A. S. and Pierre J. (1975) Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc. Roy. Soc. Lond. (B) 190, 1–31.

    Article  CAS  Google Scholar 

  • Scudder G. G. E., Moore L. V. and Isman M. B. (1986) Sequestration of cardenolides in Oncopeltus fascialus: Morphological and physiological adaptations. J. Chem. Ecol. 12, 1171–1187.

    Article  CAS  Google Scholar 

  • Seiber J. N., Tuskes P. M., Brower L. P. and Roeske C. N. (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.). J. Chem. Ecol. 6, 321–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, M.S., Whitman, D.W., Severson, R.F. et al. Herbivores and Toxic Plants: Evolution of a Menu of Options for Processing Allelochemicals. Int J Trop Insect Sci 8, 459–463 (1987). https://doi.org/10.1017/S1742758400022487

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400022487

Key Words

Navigation