Skip to main content
Log in

Insecticidal Activity of Bacillus spp. from Soil Samples in Pakistan Against the House Fly, Musca domestica

  • Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Soil samples collected from six localities in Pakistan—Peshawar, Quetta, Loralai, Sibi, Lahore and Sheikhupura—were screened for insecticidal Bacillus spp. Bacillus coagulans, B. megaterium and B. alvei, which constituted 50%, 33% and 17% of the Bacillus isolates respectively, were isolated and their toxicity was evaluated against larvae of the house fly, Musca domestica (Diptera: Muscidae). The most toxic bacterial isolate of the three was B. alvei (98.7% mortality) and the least toxic was B. megaterium (89.3% mortality). Extracts of experimental larvae showed the presence of strains of the respective species of Bacillus in all cases, indicating that the observed mortality in the house flies was caused by the Bacillus species.

Résumé

Des échantillons de sol prélevés dans six localités (Peshawar, Quetta, Loralai, Sibi, Lahore et Sheikhupura) au Pakistan ont été analysés afin d’y déceler des espèces de Bacillus spp. à pouvoir entomopathogène. Les isolats qui étaient constitués de 50% de Bacillus coagidans, 33% de B. megaterium et de 17% de B. alvei étaient testés pour leur toxicité vis-à-vis de la mouche domestique, Musca domestica (Diptera: Muscidae). L’isolât de B. alvei était le plus virulent des trois et il causait une mortalité de 98, 7%, tandis que l’isolât de B. megaterium était le moins toxique avec une mortalité de 89, 3%. Dans tous les cas examinés, les extraits obtenus des larves testées ont révélé la présence de souches de bacilles de trois espèces précitées. Ceci indique que la mortalité observée chez la mouche domestique était attribuable à ces trois espèces de Bacillus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chak, K. F. and Young, Y. M. (1990) Characterization of Bacillus tliuringiensis strains isolated from Taiwan. Proc. Natl. Sci. Counc. Repub. China B 14, 175–182.

    CAS  PubMed  Google Scholar 

  • Cheesbrough, M. (1985) Medical Laboratory Manual for Tropical Countries, Vol. II: Microbiology. Butterworth-Heinemann, Cambridge. 479 pp.

    Google Scholar 

  • Chiang, A. S., Yen, D. F. and Peng, W. K. (1986) Germination and proliferation of Bacillus tliuringiensis in the gut of rice moth larva Corcyra cephalonica. J. Invertebr. Pathol. 48, 96–99.

    Article  Google Scholar 

  • Collée, J. G. and Miles, R. S. (1989) Test for identification of bacteria, pp. 141–160. In Practical Medical Microbiology (Edited by J. G. Collée, J. P. Duguid, A. G. Fraser and B. P. Marmion). Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Cunningham, J. C. (1988) Baculoviruses. Their status compared to Bacillus tliuringiensis as microbiol insecticide. Outlook Agric. 17, 10–17.

    Article  Google Scholar 

  • DeLuca, A. J. II, Simonson, J. G. and Larson, A. D. (1981) Bacillus thuringiensis distribution in soils in the United States. Can. J. Microbiol. 27, 865–870.

    Article  Google Scholar 

  • Elespuru, R., Ijinksky, W. and Setlow, J. K. (1974) Nitrosocarbyl as potent mutagen of environmental significance. Nature (London) 247, 356–387.

    Article  Google Scholar 

  • Ertola, R. (1988) Production of Bacillus thuringiensis insecticides, pp. 187–200. In Horizons of Biochemical Engineering (Edited by S. Aiba). Exactas National University, La Plata, Argentina.

    Google Scholar 

  • Ferro, D. N. and Gelernter, W. D. (1989) Toxicity of a new strain of Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Ent. 82, 750–755.

    Article  Google Scholar 

  • Gaerterner, F. H., Soares, G. G. and Payne, J. (1990) Novel Bacillus thuringiensis isolate. Mycogen Corporation, San Diego, CA (USA).

    Google Scholar 

  • Gill, S. S., Cowles, E. A. and Pietrantonio, P. V. (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615–636.

    Article  CAS  Google Scholar 

  • Goldberg, L. J. and Margalit, J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles serengetii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 37, 355–358.

    Google Scholar 

  • Green, D. M. (1989) Bacillus species: Anthrax, pp. 392–398. In Practical Medical Microbiology (Edited by J. G. Collee J. P. Duguid, A.G. Fraserand B. P. Marmion). Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Green, M., Heumann M, Sokolow, R., Foster, L. R., Bryant, R. and Skeels, M. (1990) Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon 1985–86. Am. J. Pubi. Hlth 80, 848–852.

    Article  CAS  Google Scholar 

  • Hodgman, T. C., Zinlu, Y., Ming, S., Sawyer, T., Nicholls, C. M. and Ellar, D. JT (1993) Characterization of a Bacillus thuringiensis strain which is toxic to the house fly, Musca domestica. FEMS Microbiol. Letts. 114, 17–22.

    Article  CAS  Google Scholar 

  • Indrasith, L. S., Suzuki, N., Ogiwara, K., Asano, S. and Hori, H. (1992) Activated insecticide crystal proteins from Bacillus thuringiensis serovars killed adulthouse flies. Lett. Appl. Microbiol. 14, 174–177.

    Article  Google Scholar 

  • Lambert, B. and Peferoen, M. (1992) Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42, 112–122.

    Article  Google Scholar 

  • Li, R., Dai, S., Li, X., Zhao, Y. and Sun, C. (1992) Morphology and delta-endotoxin proteins of Bacillus thuringiensis from soils and their toxicities to insects. Wei. Sheng. Wu. Hsueh. Pao. 32, 387–393.

    CAS  PubMed  Google Scholar 

  • Manonmani, A. M., Rajendran, G. and Balaraman, K. (1991) Isolation of mosquito-pathogenic Bacillus sphaericus and Bacillus thuringiensis from the root surface of hydrophytes. Indian, J. Med. Res. 93, 111–114.

    CAS  Google Scholar 

  • Martin, P. A. W. and Travers, R. S. (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55, 2437–2442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal, P. K., Adak, T. and Sharma, V. P. (1993) Effects of temperature on toxicity of two bioinsecticides spherix (Bacillus sphaericus) and bactoculicide (Bacillus thuringiensis) against larvae of four vector mosquitoes. Indian, J. Malariol. 30, 37–41.

    CAS  Google Scholar 

  • Morris, O. N. and Trollier, M. R. (1990) Toxic strains of bacterium Bacillus thuringiensis for control of Bertha armyworm Mamestra confugrata. Canadian Patents and Development Ltd. Ottawa, Canada.

    Google Scholar 

  • Naik, S. R. (1997) Biocides, Bacillus sphaericus and Bacillus thuringiensis as potential mosquito larvicides. J. Sci. Ind. Res. 56, 651–656.

    CAS  Google Scholar 

  • Osman, G. Y., Salem, F. M. and Ghattas, A. (1988) Bio-ef f icacy of two bacterial insecticide strains of Bacillits thuringiensis as biological control agent in comparison with nematicide, Nemacur on certain parasitic nerriatoda. Anz. Schaedlingskd. Pflanzenschutz. Umweltschutz. 61, 35–37.

    Article  Google Scholar 

  • Rishikesh, N. (1982) Planning and evaluation of large scale field trials with microbial control agents, pp. 501–508. In Invertebrate Pathology and Microbial Control. Third International Colloquium on Invertebrate Pathology, Brighton, UK., September 6–10, 1982.

    Google Scholar 

  • Shakoori, A. R. and Butt, M. Z. (1980) Thioacetamide induced inhibition of development in housefly. Pakistan, J. Zool. 12, 247–264.

    CAS  Google Scholar 

  • Sneh, B. and Schuster, S. (1981) Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis previously fed B. thuringiensis treated leaves. J. Invertebr. Pathol. 37, 295–303.

    Article  Google Scholar 

  • Somers, J. D., Goshi, B. C., Barbean, J. M. and Barrett, M. W. (1993) Accumulation of organochlorine contaminants in double crested cormorants. Environ. Pollui. 80, 17–23.

    Article  CAS  Google Scholar 

  • Tabashnik, B. E., Cushing, N. L., Finson, N. and Johnson, M. W. (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Ent. 83, 1671–1676.

    Article  Google Scholar 

  • Vankova, J. (1981) Housefly susceptibility to Bacillus thuringiensis var. israelensis and a comparison with the activity of other insecticidal bacterial preparations. Acta Entomol.Bohemoslov. 78, 358–362.

    Google Scholar 

  • Venugopal, M. G., Wolfersberger, M. G. and Wallace, B. A. (1992) Effects of pH on conformational properties related to the toxicity of Bacillus thuringiensis delta-endotoxin. Biochim. Biophys. Acta 1159, 185–192.

    Article  CAS  Google Scholar 

  • Williams, S. T. (1985) Bacteria in Their Natural Environments (Edited by M. Fletcher and G. D. Floodgate). Academic Press, London.

  • Wilton, B. E. and Klowden, M. J. (1985) Solubilized crystal of Bacillus thuringiensis subsp. israelensis: Effect on adult house flies, stable flies (Diptera:Muscidae), and green lacewings (Neuroptera: Chrysopidae). J. Am. Mosq. Control Assoc. 4, 97–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shakoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakoori, A.R., Afroz, S. & Khurshid, N. Insecticidal Activity of Bacillus spp. from Soil Samples in Pakistan Against the House Fly, Musca domestica. Int J Trop Insect Sci 18, 301–306 (1998). https://doi.org/10.1017/S174275840001852X

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S174275840001852X

Key Words

Mots Clés

Navigation