Skip to main content
Log in

Antixenotic and Antibiotic Components of Resistance to the Cassava Mealybug Phenacoccus Manihoti (Homoptera: Pseudococcidae) in Various Host-Plants

  • Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Antixenotic and antibiotic components of resistance to the cassava mealybug, Phenacoccus manihoti Matt. Ferr, were evaluated in different varieties of cassava (Manihot esculenta Crantz), in Poinsettia (Euphorbia pulcherrima Wild), Talinum (Talinum triangulare Jack) and Fauxcaoutchouc (hybrid of M. esculenta and M. glaziovii Mull. Arg.). Resistance, was estimated in the field on 25 varieties of cassava by means of varietal screening. Although we were unable to identify varieties of cassava totally resistant to P. manihoti, there was evidence of partial resistances. Thus the Incoza variety is the most resistant, followed by the Moudouma and Zanaga varieties. On the other hand we found very susceptible varieties, such as Dikonda, Kataoli, 3M8 and 1M20. Laboratory evaluations of the antibiotic component of resistance, made by estimating the intrinsic capacity for increase rc, showed that the host-plants have a considerable effect on the multiplying capacity of the mealybug. Indeed rc ranges from 0.038 (Poinsettia) to 0.160 (Ganfo cassava variety), i.e. a ratio of 1 to 4 between the two extreme values. If the cassava varieties alone are considered, the percentage of maximum variation is 20% between the Incoza (rc = 0.133) and Ganfo (rc = 0.160) varieties. The Incoza cassava variety is the most resistant, in terms of both antixenosis and antibiosis. Classification of the other cassava varieties, from the most to the least resistant, differs according to the resistant component under consideration. Poinsettia and Talinum both have a very strong antixenotic component, but their antibiotic component differs (rc = 0.038 and 0.150 respectively). Our results suggest that the resistance mechanisms of the host-plants of P. manihoti intervening in the fixation of the pest (antixenosis), are different from those acting on the development of the mealybug (antibiosis). We established significant correlations between the size of the mealybugs and their demographic characteristics for all the plants studied: the duration of the prereproductive period is shorter and the net reproduction rate is higher when the mealybugs are large-sized. These results are discussed in the context of an integrated monitoring programme.

Résumé

Les composantes antixénotiques et antibiotiques de la résistance de différentes variétés de manioc (Manihot esculenta Crantz), du Poinsettia (Euphorbia pulcherrima Wild.), du Talinum (Talinum triangulare Jack.) et du Faux-caoutchouc (hybride de M. esculenta et M. glaziovii Mull. Arg.), vis-à-vis de la-cochenille farineuse du manioc Phenacoccus manihoti Matt. Ferr., ont ete évaluées. La résistance au champ a été estimée sur 25 variétés de manioc, au travers d’un criblage varietal. Ce dernier n’a pas permis d’identifier des variétés de manioc totalement résistantes vis-à-vis de P. manihoti; il a cependant permis la mise en évidence de résistances partielles. Ainsi, la variété Incoza est la plus résistante, suivie par les variétés Moudouma et Zanaga. A l’opposé, nous trouvons des variétés très sensibles telles que Dikonda, Kataoli, 3M8 et 1M20. L’évaluation au laboratoire de la composante antibiotique de la résistance, au travers de l’estimation de la capacité intrinsèque d’accroissement rc, montre que les plantes-hotes exercent une forte influence sur le pouvoir multiplicateur de la cochenille. En effet, rc est compris entre 0.038 (Poinsettia) et 0.160 (variété de manioc Ganfo) soit un rapport de 1 à 4 entre les deux valeurs extrêmes. Si nous ne considérons que les seules variétés de manioc le pourcentage de variation maximum est de 20% entre les variétés Incoza (rc = 0.133) et Ganfo (rc = 0.160). La variété de manioc Incoza est la plus résistante aussi bien en terme d’antixénose que d’antibiose. Le classement des autres variétés de manioc de la plus à la moins résistante est différent selon la composante de résistance considérée. Le Poinsettia et le Talinum dont la composante antixénotique est très forte, s’opposent en terme de composante antibiotique (rc = 0,038 et 0,150 respectivement). Nos résultats suggèrent que les mécanismes de résistance des plantes-hôtes de P. manihoti qui interviennent dans la fixation du ravageur (antixénose) sont différents de ceux qui agissent sur le développement de la cochenille (antibiose). Nous avons pu établir des corrélations significatives entre la taille des cochenilles et leurs caractéristiques démographiques pour l’ensemble des plantes étudiées: la durée de la période préreproductive est d’autant plus rapide et le taux net de reproduction d’autant plus élevé que les cochenilles sont de grandes tailles. Ces résultats sont discutés dans la cadre d’un programme de lutte intégrée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acreman, T. M. (1984) The contribution of resistance to cereal aphid control. Proc. 1984 British Crop Protection Conference, Pests and Diseases 1, 31–36.

    Google Scholar 

  • Ajayi O. and Dewar, A. M. (1983) The effect of barley yellow dwarf virus on field populations of cereal aphids, Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol. 103, 1–11.

    Article  Google Scholar 

  • Albuquerque, M. de (1976) Cochonilha en Mandioca na Amazonia. Empresa Brasileira de Pesquisa Agropecuaria and Centro de Pesquisa Agropecuaria do Tropic Umido, Belem, Brazil.

    Google Scholar 

  • Auclair, J. L. (1988) Host plant resistance. In Aphids: Their Biology, Natural Enemies and Control. Vol. 30, pp. 225–265 (Edited by Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam.

    Google Scholar 

  • Bellotti, A. and Kawano, K. (1980) Breeding approaches in cassava. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 313–335, Wiley, New York.

    Google Scholar 

  • Bhatt, N. and Singh, R. (1991) Bionomics of an Aphidiid parasitoid I Subba Rao & Sharma. 33. Impact of food plants on the behaviour of and sex allocation by the female parasitoid at varying densities. Biol. Agric. Hort. 247–259.

    Google Scholar 

  • Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population. J. anim. Ecol. 17, 15–26.

    Article  Google Scholar 

  • Birch, N. and Wratten, S. D. (1984) Patterns of aphid resistance in the genus Vicia. Ann. Appl. Biol. 104, 327–338.

    Article  Google Scholar 

  • Boussienguet, J. (1984) Bioécologie de la cochenille du manioc Phenacoccus Manihoti Matile-Ferrero et de ses ennemis naturels au Gabon. Thèse Fac. Sciences, Paris (Paris VI).

    Google Scholar 

  • CIAT (Centro Internacional de Agriculture Tropical) (1977) Cassava Production Systems. Annual Report 1976 Cali, Columbia.

    Google Scholar 

  • Carter, N. and Dixon, A. F. G. (1981) The use of insect population simulation models in breeding for resistance. Bull. SROP IV, 21–24.

    Google Scholar 

  • Dagnélie, P. (1975) Analyse Statistique à Plusieurs Variables. Les Presses agronomiques de Gembloux.

    Google Scholar 

  • Dent, D. R. (1986) Resistance to the aphid Metopolophium festucae cerealium: effect of the host plant and reproduction. Ann. Appl. Biol. 108, 577–583.

    Article  Google Scholar 

  • Dixon, A. F. G. (1987) Parthenogenetic reproduction and rate of increase in aphids. In Aphids: Their Biology, Natural Enemies and Control. Vol. 2A: 269–287 (Edited by Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam.

    Google Scholar 

  • Di Pietro, J. P. and Dedryver, C. A. (1986) Relations entre les pucerons des céréales et leurs plantes-hôtes. I-Mise au point d’une méthodologie de résistance à Sitobion avenae (F.) chez différents cultivars de blé d’hiver. Agronomie 6, 469–479.

    Article  Google Scholar 

  • Dreyer, D. L. and Campbell, B. C. (1987) Chemical basis of host-plant resistance to aphids. Plant, Cell and Environment 10, 353–361.

    CAS  Google Scholar 

  • Fabres, G. and Le Rii, B. (1988) Etude des relations plantes-insectes pour la mise au point de méthodes de régulation des populations de la cochenille du manioc. VU Symposium of the International Society for Tropical Root Crops, Gosier (Guadeloupe), 1–6 July 1985, 1. N. R. A. Edit, Paris, pp. 563–577.

    Google Scholar 

  • Fereres, A., Lister, R. M., Araya, J. E. and Foster, J. E. (1989) Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18, 388–393.

    Article  Google Scholar 

  • Firempong, S. (1988) Components of resistance to Aphis craccivora in some cowpea cultivars. Entomol. exp. Appl. i 48, 241–246.

    Article  Google Scholar 

  • Herren, A. H. R. (1987) A review of objectives and achievements. Insect Sci. Applic. 8, 837–840.

    Google Scholar 

  • Horber, E. (1972) Plant resistance to insects. Agric. Sci. Rev. 10, 1–18.

    Google Scholar 

  • Iheagwam, E.U. (1981) Natural enemies and alternative host plant of the cassava mealybug, Phenacoccus Manihoti (Homoptera: Pseudococcidae) in southeastern Nigeria. Rev. Zool. Afr. 95, 433–438.

    Google Scholar 

  • Kieckhefer, R. W. (1983) Host pbl]References and reproduction of four cereal aphids (Hemiptera: Aphididae) on certain wheat-grasses, Agropyron spp. Environ. Entomol. 12, 442–445.

    Article  Google Scholar 

  • Kogan, M. and Ortman, E. F. (1978) Antixenosis, a new term proposed to replace Painter’s “non-preference” modality of resistance. S.A.E. Bull. 24, 175–176.

    Google Scholar 

  • Kraaijeveld, A. R. and Van Alphen, J. J. M. (1986) Host-stage selection and sex allocation by Epidinocarsis lopezi (Hym.: Encyrtidae), a parasitoid of the cassava mealybug Phenacoccus Manihoti (Horn.: Pseudococcidae). Med. Fac. Landbouww. Rijksuniv. Gent. 51, 1067–1078.

    Google Scholar 

  • Laughlin, R. (1965) Capacity for increase: a useful population statistic. J. Anim. Ecol. 34, 77–91.

    Article  Google Scholar 

  • Le Rii, B. and Papierok, B. (1987) Taux intrinsèque d’accroissement naturel de la cochenille du manioc, Phenacoccus Manihoti Matile-Ferrero (Hom.: Pseudococcidae). Intérêt d’une méthode simplifiée d’estimation. Acta Oecologica, ecologia Applic. 8, 3–14.

    Google Scholar 

  • Le Rii, B., Iziquel, Y., Biassangama, A. and Kiyindou, A. (1991) Variation d’abondance et facteurs de regulation de la Cochenille du manioc Phenacoccus Manihoti. cinq ans après l’introduction é’Epidinocarsis lopezi (Hym. Encyrtidae) au Congo en 1982. Entomophaga 36, 499–511.

    Article  Google Scholar 

  • Lowe, H. J. B. (1974) Intraspecific variation of Myzus persicae on sugar beet (Beta vulgaris). Ann. Appl. Biol. 78, 15–26.

    Article  CAS  Google Scholar 

  • Mittler, T. E. (1958) Studies on the nutrition of Tuberolachnus salignus (Gmelin) (Homoptera: Aphididae). III. The nitrogen economy. J. exp. Biol. 35, 626–638.

    CAS  Google Scholar 

  • Neuenschwander, P., Schulthess, F. and Madojemu, E. (1986) Experimental evaluation of the efficiency of Epidinocarsis lopezi, a parasitoid introduced into Africa against the cassava mealybug Phenacoccus manihoti. Entomol. exp. Appl. 42, 133–138.

    Article  Google Scholar 

  • Painter, R. H. (1951) Insect Resistance in Crop Plants. The University Press of Kansas, Lawrence, Kansas.

    Book  Google Scholar 

  • Schulthess, F., Baumgärtner, J. U. and Herren, H. R. (1987) Factors influencing the life table statistics of the cassava mealybug Phenacoccus manihoti. Insect Sci. Applic. 8, 851–856.

    Google Scholar 

  • Silvestre, P. (1973) Aspects agronomiques de la production du manioc a la ferme d’état de Mantsoumba (Rép. Pop. Congo). Rapport de mission, I. R. A. T., Paris.

    Google Scholar 

  • Sinha, T. B. and Singh, R. (1979) Studies on the bionomics of Trioxys (Binodoxys) indicus (Hym.: Aphidiidae). Effect of population densities on sex ratio. Entomophaga 241, 289–294.

    Article  Google Scholar 

  • Starks, K. J. and Berry, I. L. (1976) Evaluation of sorghum and small grain resistance to greenbugs by population simulations. Environ. Entomol. 5, 205–209.

    Article  Google Scholar 

  • Starks, K. J., Muniappan, R. and Eikenbary, R. D. (1972) Interaction between plant resistance and parasitism against the greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 65, 650–655.

    Article  Google Scholar 

  • Sumner, L. C., Dorschner, K. W., Ryan, J. D., Eikenbary, R. D., Johnson, R. C. and McNew, R. W. (1986) Reproduction of Schizaphis graminum (Homoptera: Aphididae) on resistant and susceptible wheat genotypes during simulated drought stress induced with polyethylene glycol. Environ. Entomol. 15, 756–762.

    Article  Google Scholar 

  • Taylor, L. R. (1975) Longevity, fecundity and size; control of reproductive potential in a polymorphic migrant, Aphis fabae Scop. J. Anim. Ecol. 44, 135–163.

    Article  Google Scholar 

  • Van Dijken, M. J., Neuenschwander, P., Van Alphen, J. J. M. and Hammond, W. N. O. (1991) Sex ratios in field populations of Epidinocarsis lopezi, an exotic parasitoid of the cassava mealybug, in Africa. Ecol. Entomol. (In press).

    Google Scholar 

  • Van Emden, H. F. and Wearing, C. H. (1965) The role of the host plant in delaying economic damage levels in crop plants. Ann. Appl. Biol. 56, 323–324.

    Article  Google Scholar 

  • Wellings, P. W. and Dixon, A. F. G. (1987) Sycamore aphid numbers and population density. III. The role of aphid-induced changes in plant quality. J. Anim. Ecol. 56, 161–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tertuliano, M., Dossou-Gbete, S. & Le Rü, B. Antixenotic and Antibiotic Components of Resistance to the Cassava Mealybug Phenacoccus Manihoti (Homoptera: Pseudococcidae) in Various Host-Plants. Int J Trop Insect Sci 14, 657–665 (1993). https://doi.org/10.1017/S1742758400018087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400018087

Key Words

Mots Clés

Navigation