Skip to main content
Log in

Effect of Plant Quinones on Insect Flight Muscle Mitochondria

  • Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

—The effect of four biologically active and naturally occurring plant quinones, namely maesanin, maesaquinone, embelin and juglone on the respiration of mitochondria isolated from Glossina morsitans morsitans, Schistoscerca gregaria and Periplaneta americana was investigated. The rate of oxygen consumption by the mitochondria was measured using an oxygen electrode. Maesanin inhibited the mitochondrial electron transport chain at a level before cytochrome C whereas maesaquinone and embelin uncoupled the mitochondria. Juglone inhibited respiration in G. m. morsitans mitochondria and uncoupled those of S. gregaria and P. americana.

Résumé

—L’effet de 4 quinones végétales et actives biologiquements, notament maesanine, maesaquinone, embeline et juglone, a été étudié sur les mitochondries respiratoires isolées de Glossina morsitans morsitans, Schistocerca gregaria et Periplaneta americana. Le taux de consommation d’oxygène par les mitochondries a été mésuree à l’aide d’un electrode à oxygène. La maesanine a inhibé la chaine de transport de l’électron des mitochondries à un stade avant le cytochrome C tandis que le maesaquinone et l’embeline ont fait détacher la membrane mitochondriale. Le juglone a inhibé la respiration chez les mitochondries de G. m. morsitans et fait détacher celles de S. gregaria et P. americana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison A. W., Cullen W. R., Dolphin D. and Janes B. R. (1977) Biological Aspects of Inorganic Chemistry. Wiley Interscience, New York, Sydney, Toronto.

    Google Scholar 

  • Burseil E. (1975) Substrates of oxidative metabolism in dipteran flight muscle. Comp. Biochem. Physiol. 52, 235–238.

    Article  Google Scholar 

  • Bursell E., Billing K. C, Hagrove J. W., McCabe C. T. and Slack E. (1974) Metabolism of blood meal in tsetse flies. Acta Trop. 31, 297–320.

    CAS  PubMed  Google Scholar 

  • Chander H. and Ahmed S. A. (1985) Efficacy of natural embelin against the red flour beetle, Tribolium castaneum (Herbst). Insect Sci. Applic. 6, 217–220.

    CAS  Google Scholar 

  • Chander H. and Ahmed S. A. (1987) Laboratory evaluation of natural embelin as a grain protectant against some insect pests of wheat in storage. J. Stored Prod. Res. 23, 41–46.

    Article  CAS  Google Scholar 

  • Dale I. R. and Green way P. J. (1961) Kenyan Trees and Shrubs Buchanan’s Kenya Estates Ltd. Nairobi, 329 pp.

    Google Scholar 

  • Deshmukh S. D. and Borle M. N. (1975) Studies on the insecticidal properties of indigenous products. Indian J. Ent. 37, 11–18.

    Google Scholar 

  • Ernster L. (1967) D.T. Diaphorase. In Methods in Enzymology (Edited by Estabrook R. W. and Pullman E. N.), Vol. 10, pp. 309–314. Academic Press, New York and London.

    Article  CAS  Google Scholar 

  • Huang P., Chen W. and Hu Y. (1980) Studies on antituberculosis constituents from Ardisia japonica Senth. China Inst. Bot. Yao Hsueh Tung Pao, 15, 39.

    CAS  Google Scholar 

  • Jacob E. E. and Crane F. L. (1960) Phosphorylation coupled to electron transport mediated by short chain derivatives of coenzymes A. Biochem. Biophys. Res. Commun. 2, 218–221.

    Article  Google Scholar 

  • Lehninger A. L. (1915) Biochemistry, Third Edition. Worth Publishers, Inc. New York.

    Google Scholar 

  • Mabberley D. J. (1987) The Plant Book. Cambridge University Press, Melbourne, Australia.

    Google Scholar 

  • Midiwo J. O., Arot L.M. and Mbakaya L. (1988) Distribution of benzoquinone pigments in Kenyan Myrsinacea. Bull. Chem. Soc. Ethiop. 2, 83–85.

    CAS  Google Scholar 

  • Njagi E. M. N. (1987) Transport and metabolism of proline and tricarboxylic acid cycle intermediate by the mitochondria of the tsetse fly Glossina morsitans. M.Sc. Thesis, University of Nairobi.

    Google Scholar 

  • Ogawa H. and Natoris S. (1968) Hydroxybenzoquinones from Myrsinaceae. Plants—II. Phytochem. 7, 773–779.

    Article  CAS  Google Scholar 

  • Rao D. V., Rao V. V. and Raghunada P. (1985) Studies on embelin Part III. Synthesis and biological activity of some anthranilic acid ester derivatives of embelin and embelin-di-o-methyl ether. Indian J. Chem. 24, 988–991.

    Google Scholar 

  • Richard L. C. and Wang J. H. (1970) Evidence of a phosphorylated intermediate in mitochondria oxidative phosphorylation. Biochem. Biophys. Res. Commun. 38, 848–854.

    Article  Google Scholar 

  • Shar V., Sunder R. and De Souza N. J. (1984) Chornemorphine and rapanone antiparasite agents from plant source. J. Nat. Prod. 50, 730–731.

    Google Scholar 

  • Slater E. C. (1950) Application of inhibitors and uncouplers for a study of oxidative phosphorylation. In Methods in Enzymology (Edited by Estabrook R. W. and Pullman E. N.), Vol. 10, pp. 48–57. Academic Press, New York and London.

    Article  Google Scholar 

  • Webb J. L. (1966) Quinones. In Enzyme and Metabolic Inhibitors (Edited by Webb J. L.), Vol. 3, pp. 445–594. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

See Editor’s Note at the end of this issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magiri, E.N., Konji, V.N., Makawiti, D.W. et al. Effect of Plant Quinones on Insect Flight Muscle Mitochondria. Int J Trop Insect Sci 16, 183–189 (1995). https://doi.org/10.1017/S1742758400017094

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400017094

Key Words

Mots Clés

Navigation