Skip to main content
Log in

Genetic Variation in Wild Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya

  • Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Electrophoretic variation was determined at eight enzyme loci in Anopheles arabiensis from four villages in Mwea Irrigation Scheme, Kenya. Seven loci had polymorphic alleles of which at least two were common. Pooled allele frequencies at the Pgm, ß-Had and Odh loci were in Hardy-Weinberg equilibrium, while those at the Ao, Idh, Adh, Est-1 and 6-Pgd loci showed significant deviations. The frequency of heterozygotes at the Adh, Est-1 and 6-Pgd loci was less than expected, while at the Ao locus, there was an excess. A 2 x 4 contingency χ2-test for each of the loci not in Hardy-Weinberg equilibrium indicated an association between the respective gene frequencies and the villages. The suggested explanation for these observations is that each village constitutes a distinct population, and that the pooled data introduced the Wahlund effect. Allele frequencies at individual loci per village population are most likely at Hardy-Weinberg equilibrium. Larger samples per village need to be examined to facilitate a goodness of fit χ2-test between observed and expected frequencies.

Résumé

La variation électrophorétique était déterminée pour huit bandes enzymatiques dans Anophèles arabiensis provenant de quatre villages de la région irriguée de Mwea au Kenya. Sept bandes avaient des allèles polymorphiques dont au moins deux étaient communs. Les fréquences ressemblées des allèles pour les bandes Pgm, ß-Had et Odh étaient en équilibre de Hardy-Weinberg, alors que celles de Ao, Idh, Adh, Est-1 et 6-Pgd montraient des déviations significatives. La fréquence des hétérozygotes pour les bandes de Adh, Est-1 et 6-Pgd était la moins attendue alors que pour la bande Ao, il y avait un excès. Une contingeance 2 x 4 du test χ2 pour chaque bande non en équilibre de Hardy-Weinberg indiquait une association entre les fréquences respectives de genes et les villages. L’explication suggérée pour ces observations est que chaque village constitue une population distincte et que les données rassemblées introduisaient l’effet Wahlund. Les fréquences des allèles á une bande individuelle par population de village étaient plus vraisemblablement en équilibre de Hardy-Weinberg. Un plus grand nombre d’échantillons par village est nécessaire pour étre en accord avec le test χ2 entre les fréquences observées et celles attendues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayala F. F. and Powell J. R. (1972) Allozymes as characters of sibling species of Drosophila. Proc. Nail. Acad. Sci., U.S.A. 69, 1094–1096.

    Article  CAS  Google Scholar 

  • Ayala F. J., Powell J. R., Tracey M. L., Mourao C. C. and Peres-Salas S. (1972) Enzyme variability in Drosophila willistoni group. 4, Genie variation in natural populations of Drosophila willistoni. Genetics 70, 113–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlocher, S. H. (1980) An electrophoretic key for distinguishing species of the genus Rhagoletis (Diptera: Tephritidae) as larvae, pupae or adults. Ann. ent. Soc. Am. 73, 131–139.

    Article  CAS  Google Scholar 

  • Berlocher, S. H. (1984) Insect molecular systematics. A. Rev. Ent. 29, 403–433.

    Article  Google Scholar 

  • Bullini, L. and Coluzzi, M. (1978) Applied and Theoretical significance of electrophoretic studies in mosquitoes (Diptera: Culicidae). Parassitologia, Rome 20, 7–21.

    CAS  Google Scholar 

  • Coluzzi, M. and Bullini, L. (1971) Enzyme variants as markers in the study of pre-copuJatory isolating mech-anisms. Nature, Lond. 231, 455–456.

    Article  CAS  Google Scholar 

  • Coluzzi M. and Sabatini A. (1967) Cytogenetic observations on species A and B of the Anopheles gambiae complex. Parassitologia 9, 73–88.

    Google Scholar 

  • Coluzzi M. and Sabatini A. (1968) Cytogenetic observations on species C of the Anopheles gambiae complex. Para-ssitologia 10, 155–156.

    Google Scholar 

  • Coluzzi M. and Sabatini A. (1969) Cytogenetic observations on the saltwater species Anopheles merus and Anopheles melas of the gambiae complex. Parassitologia 11, 177–187.

    Google Scholar 

  • Coluzzi M., Sabatini A., Petrarca V. and Di Deco M. A. (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 73, 483–497.

    Article  CAS  PubMed  Google Scholar 

  • Corsaro B. B. and Munstermann C. E. (1984) Identification by electrophoresis of Culex adults. (Diptera: Culicidae) in light-trap samples. J. med. Eni. 21, 648–655.

    Article  CAS  Google Scholar 

  • Davidson G. (1964) The five mating-types in the Anopheles gambiae complex. Riv. Malar. 43, 167–170.

    CAS  PubMed  Google Scholar 

  • Di Deco M. A., Cancrini G., Coluzzi M., Bullini A. P. B., Cianchi R. and Bullini L. (1978) Linkage studies between chromosome inversions and enzyme loci in the mosquito Anopheles stephensi. The J. Hered. 40, 457–458.

    Article  Google Scholar 

  • Green C. A. (1972) Cytological maps for the practical identification of females of the three freshwater species of the Anopheles gambiae complex. Ann. Trop. Med. Parasit. 66, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Haridi A. M. (1974) Linkage studies on DDT and dieldrin resistance in species A and species B of the Anopheles gambiae complex. Bull. Wld. Hlth. Org. 50, 441–448.

    CAS  Google Scholar 

  • Highton R. B., Bryan J. H., Boreham P. F. L. and Chandler J. A. (1979) Studies on the sibling species Anopheles gambiae Giles an L.Anopheles arabiensis Patton (Diptera: Culicidae) in the Kisumu area, Kenya. Bull. ent. Res. 69, 43–53.

    Article  Google Scholar 

  • Iqbal M. P., Sakai R. R. and Baker R. H. (1973) The genetics of an alcohol dehydrogenase in the mosquito Anopheles stephensi. J. med. Ent. 10, 309–311.

    Article  CAS  Google Scholar 

  • Lewontin R. R. and Hubby J. L. (1966) A molecular approach to the study of genie hetorozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseu-doobscura. Genetics 54, 595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon R. J., Green C. C. and Hunt R. H. (1976) Diagnostic allozymes for routine identification of adults of Anopheles gambiae complex (Diptera: Culicidae). Bull. ent. Res. 66, 25–31.

    Article  CAS  Google Scholar 

  • May B., Bauer R. L., Vadas R. R. and Granett J. (1977) Biochemical genetic variation in the Family Simuliidae: Electrophoretic identification of the human biter in the isomorphic Simulium jenningsi group. Ann. ent. Soc. Am. 70, 637–640.

    Article  CAS  Google Scholar 

  • Miles S. J. (1976) Taxonomic significance of assortative mating in a mixed field population of Culex pipiens australicus, C.P. quinquefasciatus and C. globocoxitus. Syst. Ent. 1, 263–270.

    Google Scholar 

  • Miles S. J. (1978) Enzyme variation in the Anopheles gambiae Giles group of species (Diptera: Culicidae). Bull. ent. Res. 68, 85–96.

    Article  CAS  Google Scholar 

  • Miles S. J. (1979) A biochemical key to adult members of the Anopheles gambiae group of species (Diptera: Culicidae). J. med. Eni. 15, 297–299.

    Article  CAS  Google Scholar 

  • Miles S. S. and Paterson H. E. (1979) Protein variation and systematics in the Culex pipiens group of species. Mosq. Syst. 11, 187–202.

    Google Scholar 

  • Munstermann L. E. (1980) Distinguishing geographic strains of the Aedes atropalpus group (Diptera: Culicidae) by an analysis of enzyme variation. Ann. ent. Soc. Am. 73, 699–704.

    Article  Google Scholar 

  • Narang S. and Seawright J. A. (1982) Linkage relationships and genetic mapping in Culex and Anopheles. In Proc. Recent Developments in Genetics of Insect Disease Vectors (Edited by Steiner W. W. M., Tabachnick W. J., Rai K. K. and Narang S.) pp. 231–289. Stipes Publ. Co. Champaign, IL.

    Google Scholar 

  • Narang S. and Seawright J. A. (1983) Genetic and physicochemical studies of ß-hydroxyacid dehydrogenase in An. albimanus. Biochem. Genet. 21, 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Narang S., Seawright J. J. and Kitzmiller J. B. (1981) Linkage relationships and assignment of esterase-4 and esterase-8 loci to chromosome 3 in Anopheles albimanus. The J. Hered. 72, 157–160.

    Article  CAS  PubMed  Google Scholar 

  • Narang S., Seawright J. A., Mukiama T. T. and Willis N. L. (1983) Assignment of 6-phosphogluconate dehy-drogenase and glucose oxidase to chromosome 2 of Anopheles albimanus. Can. J. Genet. Cytol. 25, 567–572.

    Article  CAS  Google Scholar 

  • Pashley D. D. and Rai K. S. (1983) Comparison of allozyme and morphological relationships in some Aedes (Stegomyia) mosquitoes (Diptera: Culicidae). Ann. ent. Soc. Am. 76, 388–394.

    Article  Google Scholar 

  • Saul S. H., Grimstad P. P. and Craig Jr., G. B. (1977) Identification of Culex species by electrophoresis. Amer. J. Trop. Med. Hyg. 26, 1009–1010.

    Article  CAS  Google Scholar 

  • Seawright, J. A. Kaiser, P. E. and Narang, S. (1981) Chromosome manipulation studies of Anopheles albimanus for genetic control. In Cytogenetics and Genetics of Vectors. (Editors Pal, R.; Kitzmiller J. J. and Kanda T.), pp. 249–261. Elsevier Biomedical, NY.

    Google Scholar 

  • Steiner W. W. M. and Joslyn D. J. (1979) Electrophoresis techniques for the genetic study of mosquitoes. Mosq. News. 39, 35–54.

    CAS  Google Scholar 

  • Wagner R. R. and Selander R. K. (1974) Isozymes in insects and their significance. A. Rev. Ent. 19, 117–138.

    Article  CAS  Google Scholar 

  • White G. B. (1974) Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. trop. Med. Hyg. 68, 278–301.

    Article  CAS  PubMed  Google Scholar 

  • White G. B. (1985) Anopheles gambiae, sp. n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An. gambiae complex (Diptera: Culicidae). Syst. Ent. 10, 510–522.

    Article  Google Scholar 

  • White G. B., Magayuka S. S. and Boreham P. F. L. (1972) Comparative studies on sibling species of the Anopheles gambiae Giles complex (Diptera: Culicidae): Bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull. ent. Res. 62, 295–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukiama, T.K. Genetic Variation in Wild Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya. Int J Trop Insect Sci 8, 245–249 (1987). https://doi.org/10.1017/S1742758400007293

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400007293

Key Words

Navigation