ULV Application to a Tree Crop Canopy: Evaluation of Physical Performance and Penetration

  • Kwame Afreh-Nuamah
  • E. W. Thornhill


Spray distribution in an apple tree canopy using an adapted knapsack mistblower fitted with a spinning disc, with the provision of an induced electrostatic charge on the droplets was studied.

Droplets were sampled using uvitex fluorescent tracer on Kromekote cards positioned in different areas of the canopy.

Droplets were highest on the outer surface and decreased sharply into the canopy. Uncharged spray droplets gave the poorer deposition with better distribution, but by adding an electrostatic charge, droplet deposition was significantly improved in the outer parts of the canopy. An average of 3 ml/tree of spray liquid was used in all applications. The larger variety (Red Victoria) required about 50% more spray liquid, but distribution was still lower than that achieved by the smaller Keswick variety.


Ultra low volume (ULV) spinning disc droplets tree crop canopy distribution 


Une étude a été faite sur la distribution dans la pulvérisation de la cime d’un pommier en utilisant un pulvérisateur à dos adapté, avec un gicleur ayant un aménagement pour l’induction de charges électro-statiques des gouttelettes.

Les gouttelettes ont été analysées à l’aide d’un tracer fluorescent Uvitex sur des cartes kromekote positionées dans des places différentes de la cime du pommier.

La déposition qui était plus supérieure dans la surface extérieure décroissait brusquement dans la surface intérieure de la cime. Les gouttelettes non-chargées malgré leur faibre déposition avaient la meilleure distribution. Cependant, par le rajout des charges électro-statique, la déposition des gouttelettes était amméliorée d’une manière remarquable dans les parties extérieures de la cime du pommier. En moyenne, 3 ml/arbre de solution étaient utilisés dans toute les application. Les arbres connaissaient une baisse progressive de pulvérisation, et en conséquence, une faibre déposition, sur charque unité de surface des feuilles au fur et à mesure que l’étendue de la cime ou la taille de l’arbre accroissaient, cette déposition, par contre, étaint presque nulle dans les parties selon qu’ils soient loin ou qu’ils soient protégés du pulvériseur.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afreh-Nuamah K. (1987) Spray distribution in a tree crop. Ph.D. thesis University of London.Google Scholar
  2. Afreh-Nuamah K. and Matthews G. A. (1987) Comparative spray distribution in a tree crop with 3 different spray nozzles. Aspects of appl. Biol. 14, 77–83.Google Scholar
  3. Allen J. G., Austin D. J., Swait A. A. T. and Warmah T. M. (1983) Experience with a hand held ULV charged-drop sprayer on fruit. Proceedings 10th International Congress of Plant Protection 2, 501.Google Scholar
  4. Amsden R. C. (1962) Reducing the evaporation of spray. Agric. Aviat. 4, 88–93.Google Scholar
  5. Barrat R. E., Mass J. L., Retzer H. J. and Adams R. E. (1981) Comparisons of spray droplet size, pesticide depo¬sition and drift with ultra low volume, low volume and dilute pesticide application on apple. Plant Diseases 65, 872–875.CrossRefGoogle Scholar
  6. Coffee A. A. (1979) Electrodynamic energy—a new ap¬proach to pesticide application. Proceedings British Crop Protection Council Conference—Pests and Diseases 3, 777–789.Google Scholar
  7. Coffee A. A. (1980) Electrodynamic spraying. British Crop Prot. Coun. Monogr. 24, 95–107.Google Scholar
  8. Cooke B. K., Herrington P. J., Jones K. G. and Morgan N. G. (1976) Spray deposit cover and fungicides distribution obtained by low volume spraying of intensive apple trees. Pestic. Sci. 7, 35–40.CrossRefGoogle Scholar
  9. Cooke B. K., Herrington P. J., Jones K. G. and Morgan N. G. (1977) Progress towards economical and precise top fruit spraying. Proceedings 1977 British Crop Protection Council Conference—Pests and Diseases 2, 323–329.Google Scholar
  10. Endacott C. J. (1983) Non-target organism mortality—a comparison of spraying techniques. Proceedings 10th International Congress of Plant Protection 2, 502.Google Scholar
  11. Hislop E. C. (1983) Methods of droplet production in relation to pesticide deposition and biological efficacy in cereals and tree crops. Proceedings 10th International Congress of Plant Protection 2, 469–477.Google Scholar
  12. Law S. E. and Bowen H. D. (1966) Charging liquid spray by electrostatic induction. Transactions of the American Society of Agricultural Engineers 9, 501–506.CrossRefGoogle Scholar
  13. Matthee F. N., Thomas A. C, Schwaebe W. F. S. and Nel E. W. (1976) Control of apple mildew (Podosphaera leucotricha) by applying low and ultra low volume sprays. Deciduous Fruit Growers 24, 174–179.Google Scholar
  14. Morgan N. G. (1974) Some biological requirements in the ULV spraying of top fruit. British Crop Prot. Coun. Monogr. II.Google Scholar
  15. Munthali D. C. and Wyatt I. T. (1986) Factors affecting the biological efficiency of small droplets or solution and consideration of the implication. Pestic. Sci. 13, 60–62.CrossRefGoogle Scholar
  16. Pye B. J. (1983) Application techniques to increase crop penetration of charged sprays. Proceedings 10th Inter-national Congress of Plant Protection 2, 504.Google Scholar
  17. Omar D. and Matthews G. A. (1987) Biological efficiency of spray droplets of permethrin ULV against the diamond back moth. Aspects Appl. Biol. 14, 173–179.Google Scholar

Copyright information

© ICIPE 1988

Authors and Affiliations

  • Kwame Afreh-Nuamah
    • 1
  • E. W. Thornhill
    • 1
  1. 1.International Pesticide Application Research CentreImperial College at Silwood ParkAscotEngland

Personalised recommendations