Feeding Deterrence Induced by Some Plants in Spodoptera littoralis and Their Potentiating Effect on Bacillus thuringiensis Berliner

  • H. S. Salama
  • A. Sharaby


Investigations have been made to evaluate the development of Spodoptera littoralis as affected by feeding on a standard artificial diet containing powder of some plant species known to be resistant to the infestation of this insect. Trials were also made to find out whether the effect of these plants facilitate the potency of Bacillus thuringiensis var enlomocidus HD-635 vs. the target insect. The results revealed that powders of pomegranate peel, guava leaves and lemon grass, greatly affected the insect development in terms of larval duration, larval and pupal weights, deformities in pupae and moths, percentage of emergence, egg production and hatching. This may be correlated to the chemical constituents of these plants. A marked increase was observed in the potency of B. thuringiensis endotoxin preparation vs. S. littoralis when combined with some of the tested powdered plants or its extracts but in varying degrees.

Key Words

Spodoptera littoralis Bacillus thuringiensis standard artificial diet endoxin preparation 


Les investigations ont fait pour évoluer le development de Spodoptera littoralis qui est a effecté par la nouriture sur un olimentation artificiel standard contient poudre de quelques spèces de plantes qui sont convues comme resistente contre l’invasion de l’insecte.

Les jugements sont faites encore pour trouver si l’effet de ses plantes facilitent la puissance de Bacillus thuringiensis var. entomocidus HD-635 contre l’insect.

Les résultats réveloient que les poudres de granade épluché, les feuilles de guava et l’herbe de citran effectoient grandement le development de l’insecte dans le period de larve, le poids de larve et de numph, le diformité du numphs de mites, le pourcentage de l’émergence, la production des oeufs et ses éclosions. Ces résultats peut être correspondrent avec les constituents chimiques des ces plantes. Une gronde augmentation était observé dans la priussance de l’endotoxin preparer par B. thuringiensis contre S. littoralis quand il est réuni avec quelque plantes examiner ou leurs extraits mois dans divers degré.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Ent. 18, 265–267.CrossRefGoogle Scholar
  2. Asari P. A. R. and Thomas M. J. (1976) On the use of lemon-grass leaf infusion for control of brinyal aphid. Agric. Res. J. Kerala. 12, 77.Google Scholar
  3. Braverman J. B. S. (1949) Citrus products: Chemical composition and chemical technology. Interscience Publishers, New York.Google Scholar
  4. Chan B. G., Waiss A. C. Jr., Stanley W. L. and Goodban A. E. (1978) A rapid diet preparation method for antibiotic phytochemical bioassay. J. Econ. Ent. 71, 366–368.CrossRefGoogle Scholar
  5. Dimetri N. Z. (1972) Further studies on the host plant preference of Spodoptera littoralis Boisd. Z. angew. Ent. 71, 350–355.CrossRefGoogle Scholar
  6. Dulmage H. T., Boening O., Rehenberg C. and Hansen G. (1971) A proposed standardized bioassay for formulations of B. thuringiensis based on the international unit. J. Invertebr. Pathol. 18, 240–245.CrossRefGoogle Scholar
  7. Duncan D. B. (1951) A significance test for differences between ranked treatments in an analysis of variance. Va. J. Sci. 2, 171–189.Google Scholar
  8. Dutta P. K. and Chakravarti R. N. (1971) Constituents of Euphorbia lathyris. Phytochem. 10, 2550.CrossRefGoogle Scholar
  9. Feeny P. O. (1968) Effects of oak leaf tannin on larval growth of the winter moth Operophtera brumata. J. Insect Physiol. 14, 805–817.CrossRefGoogle Scholar
  10. Fraenkel G. (1969) Evaluation of our thoughts on secondary plant substances. Ent. exp. appl. 12, 473–486.CrossRefGoogle Scholar
  11. Guenther E. (1948) The Essential Oils. New York, D. Van Nostrand Co. Inc.Google Scholar
  12. Klocke J. A. and Chan B. (1982) Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis Zea. J. Insect Physiol. 28, 911–915.CrossRefGoogle Scholar
  13. Lichtenstein E. P. and Casida J. E. (1963) Myristicyn, an insecticide and synergist occurring naturally in the edible parts of parsnips. J. Agric. Food Chem. 11, 410–415.CrossRefGoogle Scholar
  14. Lichtenstein E. P., Liang T. L., Schultz K. R., Schnoes H. K. and Carter G. T. (1974) Insecticidal and synergistic components isolated from dill plants. Ibid. 22, 658–664.Google Scholar
  15. Meisner J. and Ascher K. R. S. (1972) Feeding stimulants for the larva of the Egyptian cotton leafworm, Spodoptera littoralis Boisd. II. Assaying the larval feeding response to extracts of fruits and their peels with the styropor method. Z. Angew. Ent. 71, 337–349.CrossRefGoogle Scholar
  16. Munakata K. (1970) Insect antifeedants in plants. In Control of Insect Behaviour by Natural Products (Edited by Wood D. L., Silverstein R. M. and Nakajina M.), pp 179–187. Academic Press, New York.CrossRefGoogle Scholar
  17. Nayar J. K. and Fraenkel G. (1962) The chemical basis of hostplant selection in the silkworm, Bombyx mori l. J. Insect Physiol. 8, 505–525.CrossRefGoogle Scholar
  18. Osman A. M., Younes M. E. and Sheta A. E. (1975) Chemical examination of local plants. VII. Psidium guajava L. leaf extracts. Egypt. J. Chem. 18, 347–352.Google Scholar
  19. Salama H. S. (1970) Rearing the corn borer Ostrinia nubrlalis Hubn. on a semiartificial diet. Z. Angew. Ent. 65, 216–218.CrossRefGoogle Scholar
  20. Salama H. S., Dimitry N. Z. and Salem S. A. (1971) On the host preference and biology of the cotton leafworm, Spodoptera littoralis Boisd. Z. Angew. Ent. 67, 261–266.CrossRefGoogle Scholar
  21. Salama H. S., Foda M. S. and Shataby A. F. (1983) Novel fermentation media for production of endotoxins from Bacillus thuringiensis. J. Invertebr. Pathol. 41, 8–19.CrossRefGoogle Scholar
  22. Salama H. S., Wassel G. and Saleh R. (1970) Resistance of some varieties of Mangifera indica L. to scale insects infestation due to flavonoids. Curr. Sci. 39, 497.Google Scholar
  23. Schmidt O. Th. and Werner F. (1958) Flavogallol, an intermediate of the dye of pomegranate skin. Z. Naturforsch. 13b, (136).CrossRefGoogle Scholar
  24. Sneh B. and Gross S. (1981) Toxicity of avocado leaves Persea americana to young larvae of Spodoptera littoralis Boisd. Z. Angew. Ent. 92, 420–422.CrossRefGoogle Scholar
  25. Wada K. and Munakata K. (1968) Naturally occurring insect control chemicals. Isoboldine, a feeding inhibitor, and cocculolidine, an insecticide in the leaves of Cocculus trilobus DC. J. Agric. Fd. Chem. 16, 417–474.CrossRefGoogle Scholar
  26. Wada K., Enomoto Y., Matsui K. and Munakata K. (1968) Insect antifeedants from Parabenzoin trilobum (1). Two new sesquiterpenes, shirimodiol-diacetate and mono-acetate. Tetrahedron Lett. 45, 4673–4676.CrossRefGoogle Scholar
  27. Wada K., Matsui K., Enomoto Y., Ogiso O. and Munakata K. (1970) Insect feeding inhibitors in plants. Part I. Isolation of three new sesquiterpenoids in Parabenzoin trilobum Nakai. Agric. Biol. Chem. 34, 941–945.Google Scholar
  28. Wada K. and Munakata K. (1971) Insect feeding inhibitors in plants. III. Feeding inhibitory activity of terpenoids in plants. Agric. Biol. Chem. 35, 115–118.Google Scholar
  29. Yakushevich M. V. (1954) Properties of some Uzbakistan pomegranates as determined from the chemical and mechanical composition of their fruits. Inst. Akad. Nauk. Uzbek. S.S.R. 20, 117–120.Google Scholar

Copyright information

© ICIPE 1988

Authors and Affiliations

  • H. S. Salama
    • 1
  • A. Sharaby
    • 1
  1. 1.Laboratories of Pests and Plant ProtectionNational Research CentreDokki, CairoEgypt

Personalised recommendations