Skip to main content
Log in

Y-Autosome Genetic Sexing Strain of Anopheles albimanus (Diptera: Culicidae)

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Stripe (st+) is a dominant trait on chromosome 3R in region 33B on the cytological chromosome map of Anopheles albimanus. It is expressed as a white longitudinal stripe in fourth stage larvae and pupae, and marks a Y-autosome translocation stock T(Y; 3R)3. Pseudolinkage analysis of the available markers to the translocation breakpoint showed complete absence of recombinant progeny between T(Y;3R)3 and st+. The two loci most likely either overlap or are very closely linked. This translocation strain can be genetically sexed by selection of the stripe marker.

Résumé

Stripe (st+) est un caractère dominant localise sur le chromosome 3R de la region 33B de la carte chromosomique de Anopheles albimanus. Ce caractère s’exprime comme une bande blanche longitudinale dans les larves et pupae du/quatrième étage et correspond a une souche T(Y;3R)3 caractérisée par une translocation Y-autosomique. Une analyse pseudoliaison entre les marqueurs disponibles et le point de rupture de la translocation a montre une absence complete de descendance recombinante entre T(Y; 3R)3et st+. Les deux loci sont probablement superposes ou lier très étroitement. Le sexe de la souche transloquée/peut être determine génétiquement par selection du marqueur stripe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asman S. M, McDonald P. T. and Prout T. (1981) Field studies of genetic control systems for mosquitoes. A. Rev. Ent. 26, 289–318.

    Article  CAS  Google Scholar 

  • Ayala F. J., Powell J. R., Tracey M. L., Mourao C. A. and Peres-Salas S. (1972) Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni group. Genetics 70, 113–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker R. H., Sakai R. K. and Saifuddin U. T. (1978) Genetic sexing technique for a mosquito sterile male release. Nature 274, 253–255.

    Article  Google Scholar 

  • Baker R. H., Sakai R. K. and Raana K. (1981) Genetic sexing for the mosquito sterile male release. J. Hered. 72, 216–218.

    Article  CAS  Google Scholar 

  • Curtis C. F. (1978) Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull. Wld Hlth Org. 56, 453–54.

    CAS  Google Scholar 

  • Curtis C. F., Akiyama J. and Davidson G. (1976) A genetic sexing system in Anopheles gambiae species A. Mosquito News 36, 493–98.

    Google Scholar 

  • Foster G. C., Whitten M. J., Prout T. and Gill R. (1972) Chromosome rearrangements for the control of insect pests. Science 176, 875–880.

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency (1983) Report on research coordination meeting on the development of sexing mechanisms in fruit flies through manipulation of radiation-induced lethals and other genetic means, pp. 16–17. Vienna, Austria.

    Google Scholar 

  • Kaiser P. E., Seawright J. A., Dame D. A. and Joslyn D. J. (1978) Development of a genetic sexing system for Anopheles albimanus U. J. econ. Ent. 71, 766–771.

    Article  Google Scholar 

  • Kaiser P. E., Seawright J. A. and Joslyn D. J. (1979) Cytology of a genetic sexing system in Anopheles albimanus. Can. J. Genet. Cytol. 21, 201–211.

    Article  Google Scholar 

  • Keppler W. J. Jr, Kitzmiller J. B. and Rabbani M. G. (1973) The salivary gland chromosomes of Anopheles albimanus. Mosquito News 33, 42–49.

    Google Scholar 

  • McDonald I. C. (1971) A male-producing strain of the housefly. Science 111, 489.

    Article  Google Scholar 

  • Narang S. and Seawright J. A. (1983a) Genetic mapping and characterisation of aldehyde oxidase of Anopheles albimanus (Diptera: Culicidae). Biochem. Genet. 21, 653–660.

    Article  CAS  Google Scholar 

  • Narang S. and Seawright J. A. (1983b) Genetic and physiochemical studies on β-hydroxy acid dehydrogenase in Anopheles albimanus. Biochem. Genet. 21, 885–893.

    Article  CAS  Google Scholar 

  • Narang S., Seawright J. A. and Joslyn D. J. (1981) Inheritance and mapping of hexokinase-1 and phosphoglucomutase in Anopheles albimanus. Mosquito News 41, 99–106.

    Google Scholar 

  • Narang S., Seawright J. A. and Willis N. L. (1984) Assignment of glutamate oxaloacetate transaminase to chromosome 2 and alcohol dehydrogenase to chromosome 3 of Anopheles albimanus. Can. J. Genet. Cytol. 26, 590–594.

    Article  Google Scholar 

  • Rabbani M. G. and Kitzmiller J. B. (1972) Chromosomal translocations in Anopheles albimanus Wiedemann. Mosquito News 32, 421–432.

    Google Scholar 

  • Rabbani M. G. and Seawright J. A. (1976) Use of Yautosome translocations in assigning the stripe locus to chromosome 3 in the mosquito Anopheles albimanus. Ann. ent. Soc. Am. 69, 266–268.

    Article  Google Scholar 

  • Robinson A. S. and Heemert C. van (1981) Genetic sexing in Drosophila melanogaster using the alcohol dehydrogenase locus and a Y-linked translocation. Theoret. appl. Genet. 59, 23–24.

    Article  CAS  Google Scholar 

  • Robinson A. S. and Heemert C. van (1982) Ceratitis capitata, a suitable case for genetic sexing. Genetica 58, 229–237.

    Article  Google Scholar 

  • Rossler Y. (1979) Automated sexing of Ceratitis capitata (Diptera: Tephritidae): the development of strains with inherited, sex-limited pupal color dimorphism. Entomophaga 24, 411–416.

    Article  Google Scholar 

  • Seawright J. A., Haile D. G., Rabbani M. G. and Weidhaas D. E. (1979) Computer simulation of the effectiveness of male-linked translocations for the control of Anopheles albimanus Wiedemann. Am. J. trap. Med. Hyg. 28, 155–160.

    Article  CAS  Google Scholar 

  • Seawright J. A., Kaiser P. E. and Narang S. (1981a) Chromosome manipulation studies of Anopheles albimanus for genetic control. In Cytogenetics and Genetics of Vectors (Edited by Pal R., Kitzmiller J. B. and Kanda T.), pp. 249–261. Elsevier Biomedical, New York.

    Google Scholar 

  • Seawright J. A., Kaiser P. E., Suguna S. G. and Focks D. A. (1981b) Genetic sexing strains of Anopheles albimanus Wiedemann. Mosquito News 41, 107–114.

    Google Scholar 

  • Seawright J. A., Benedict M. Q., Suguna S. G. and Narang S. (1982) Redeye and vermillion eye, recessive mutants on the right arm of chromosome 2 in Anopheles albimanus. Mosquito News 42, 590–593.

    Google Scholar 

  • Steiner W. W. M. and Joslyn D. J. (1979) Electrophoretic techniques for the genetic study of mosquitoes. Mosquito News 39, 35–54.

    CAS  Google Scholar 

  • Whitten M. J. (1969) Automated sexing of pupae and its usefulness in control by sterile insects. J. econ. Em. 62, 272–273.

    Google Scholar 

  • Whitten M. J., Foster G. C., Arnold J. T. and Konowalow C. (1975) The Australian sheep blowfly, Lucila cuprina. In Handbook of Genetics, Vol. 3, Invertebrates of Genetic Interest (Edited by King R. C), pp. 401–418.

    Google Scholar 

  • Willis N. L., Smittle B. J. and Seawright J. A. (1980) A genetic sexing system for Stomoxys calcitrans. Proceedings of the Florida Anti-Mosquito Association, 51st Meeting Vol. 51, pp. 52–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukiama, T.K. Y-Autosome Genetic Sexing Strain of Anopheles albimanus (Diptera: Culicidae). Int J Trop Insect Sci 6, 649–652 (1985). https://doi.org/10.1017/S1742758400002836

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400002836

Key Words

Navigation