Skip to main content
Log in

Grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rutile nanocrystals were directly prepared under hydrothermal conditions using TiCl4 as the starting material. The formation reactions proceeded by suppressing the crystallization of the other TiO2 polymorphs using a fixed concentration of 0.62 M [Ti4+]. With increasing reaction temperatures from 140 to 220°C, rutile nanocrystals were found to grow from 5.4 to 26.4 nm in size, and by varying the reaction time from 2 to 120 h at 200°C the particle size increased from 17 to 40 nm. The grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions was found to follow the equation, Dn = k0 × t × e(-Ea/RT) with a grain-growth exponent n = 5 and an activation energy of Ea = 170.8 kJ mol-1. The nanocrystals thus obtained consist of an interior rutile lattice and a surface hydration layer. With decreasing particle size, the hydration effects at the surface increase, while the rutile structure shows a lattice expansion and covalency enhancement in the Ti-O bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, U.K., 1975).

  2. B. O’Regan and M. Gratzel, Nature, 353, 737 (1991).

    Article  Google Scholar 

  3. K.N.P. Kumar, K. Keizer, and A. Burggraaf, J. Mater. Chem. 3, 1141 (1993).

    Article  CAS  Google Scholar 

  4. D.F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 5, 1523 (1996).

    Google Scholar 

  5. L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, and H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996).

    Article  CAS  Google Scholar 

  6. T. Moritz, J. Reiss, K. Diesner, D. Su, and A. Chemseddine, J. Phys. Chem. B 101, 8052 (1997).

    Article  CAS  Google Scholar 

  7. D.S. Lee and T.K. Liu, J. Sol-Gel Sci. Technol. 25, 121 (2002).

    Article  CAS  Google Scholar 

  8. T. Sugimoto and X.P. Zhou, J. Colloid Interf. Sci. 252, 347 (2002).

    Article  CAS  Google Scholar 

  9. H. Parala, A. Devi, R. Bhakta, and R.A. Fischer, J. Mater. Chem. 12, 1625 (2002).

    Article  CAS  Google Scholar 

  10. G.J. Wilson, G.D. Will, R.L. Frost, and S.A. Montgomery, J. Mater. Chem. 12, 1787 (2002).

    Article  CAS  Google Scholar 

  11. C.C. Wang, and J.Y. Ying, Chem. Mater. 11, 3113 (1999).

    Article  CAS  Google Scholar 

  12. H. Zhang and J.F. Banfield, J. Mater. Chem. 8, 2073 (1998).

    Article  CAS  Google Scholar 

  13. S.D. Park, Y.H. Cho, W.W. Kim, and S.J. Kim, J. Solid State Chem. 146, 230 (1999).

    Article  CAS  Google Scholar 

  14. JCPDS 21-1276 (International Center for Diffraction Data, Newton Square, PA, 1998).

  15. S.T. Aruna, S. Tirosh, and A. Zaban, J. Mater. Chem. 10, 2388 (2000).

    Article  CAS  Google Scholar 

  16. L. Ciavatta, D. Ferri, and G. Riccio, Polyhedron 4, 15 (1985).

    Article  CAS  Google Scholar 

  17. H. Cheng, J. Ma, Z. Zhao, and L. Qi, Chem. Mater. 7, 663 (1995).

    Article  CAS  Google Scholar 

  18. V.D. Hildenbrand, H. Fuess, G. Pfaff, and P. Reynders, Z. Phys. Chem. 194, 139 (1996).

    Article  CAS  Google Scholar 

  19. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  20. H.J. Hofler and R.S. Averback, Scripta Metall. Mater. 24, 2401 (1990).

    Article  Google Scholar 

  21. G. Thorwarth, S. Mandl, and B. Rauschenbach, Surf. Coatings Technol. 136, 236 (2001).

    Article  CAS  Google Scholar 

  22. K.S. Kim and N. Winograd, Surf. Sci. 43, 625 (1974).

    Article  CAS  Google Scholar 

  23. E. McCafferty and J.P. Wightman, Surf. Interf. Anal. 26, 549 (1998).

    Article  CAS  Google Scholar 

  24. Q.W. Li, D.R. Baer, M.H. Engelhard, and A.N. Shultz, Surf. Sci. 344, 237 (1995).

    Article  Google Scholar 

  25. S. Sodergren, H. Siegbahn, H. Rensmo, H. Lindstriom, A. Hagfeldt, and S.E. Lindquist, J. Phys. Chem. B 101, 3087 (1997).

    Article  Google Scholar 

  26. C.N. Sayers and N.R. Armstrong, Surf. Sci. 77, 301 (1978).

    Article  CAS  Google Scholar 

  27. V.A. Vergazov, A.V. Leko, and R.A. Evarestov, Phys. Solid State 41, 1286 (1999).

    Article  Google Scholar 

  28. P.K. Schelling, N. Yu, and J.W. Halley, Phys. Rev. B 58, 1279 (1998).

    Article  CAS  Google Scholar 

  29. V.R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, Phys. Rev. B 53, 2167 (1996).

    Article  CAS  Google Scholar 

  30. P. Ayyub, V.R. Palkar, S. Chattopadhyay, and M. Multani, Phys. Rev. B 51, 6135 (1995).

    Article  CAS  Google Scholar 

  31. S. Tsunekawa, K. Ishikawa, Z.Q. Li, Y. Kawazoe, and A. Kasuga, Phys. Rev. Lett. 85, 3440 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Woodfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Li, L., Boerio-Goates, J. et al. Grain-growth kinetics of rutile TiO2 nanocrystals under hydrothermal conditions. Journal of Materials Research 18, 2664–2669 (2003). https://doi.org/10.1017/S0884291400065936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S0884291400065936

Navigation