Skip to main content
Log in

Materials Challenges for Advanced Nuclear Energy Systems

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nuclear energy holds the promise to provide vast amounts of reliable baseline electricity at commercially competitive costs with modest environmental impact. However, the future of nuclear energy lies beyond the current generation of light water reactors. Future reactors will be expected to provide additional improvements in safety, maintain high reliability, use uranium resources more efficiently, and produce lower volumes of less toxic solid wastes. Several advanced reactor concepts are under development to meet these demands. In most cases, these designs translate into higher operating temperatures and longer lifetimes, more corrosive environments, and higher radiation fields in which materials must reliably perform. This issue focuses on the materials challenges that will determine the feasibility of these advanced concepts and define the long-term future of nuclear power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Butler, Nature 429 (20), 238 (2004).

    Google Scholar 

  2. G.H. Marcus, Prog. Nucl. Energy 50 (2), 92 (2008).

    Google Scholar 

  3. W. Nuttall, Nuclear Renaissance: Technologies and Policies for the Future of Nuclear Power (Taylor & Francis, Oxford, UK, 2004).

    Google Scholar 

  4. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, J. Nucl. Mater. 329–333, 166 (2004).

    Google Scholar 

  5. T.R. Allen, J.T. Busby, R.L. Klueh, S.A. Maloy, M.B. Toloczko, JOM 60, 15 (2008).

    Google Scholar 

  6. B. Raj, M. Vijayalakshmi, P.R.V. Rao, K.B.S. Rao, MRS Bull. 33, 327 (2008).

    Google Scholar 

  7. G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008).

    Google Scholar 

  8. J.L. Boutard, A. Alamo, R. Lindau, M. Rieth, C. R. Phys. 9, 287 (2008).

    Google Scholar 

  9. S.J. Zinkle, N.M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000).

    Google Scholar 

  10. K. Ehrlich, J. Konys, L. Heikinheimo, J. Nucl. Mater. 327, 140 (2004).

    Google Scholar 

  11. F. Carré, C. Renault, P. Anzieu, Ph. Brossard, P. Yvon. Outlook to France’s R&D Strategy on Future Nuclear Systems. Research Reactor Fuel Management Conference (RRFM 2007), Lyon, France (March 2007).

  12. A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Advisory Committee and the Generation IV International Forum, GIF-002-00, December 2002, http://gif.inel.gov/roadmap/.

  13. G.R. Odette, B.D. Wirth, D.J. Bacon, N.M. Ghoniem, MRS Bull. 26, 176 (2001).

    Google Scholar 

  14. G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2007).

    Google Scholar 

  15. W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, M.C. Weinberg, J. Mater. Res. 12, 1946 (1997).

    Google Scholar 

  16. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M.A. Nastasi, E.H.K. Salje, E.R. Vance, S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Google Scholar 

  17. R.C. Ewing, MRS Bull. 33, 338 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guérin, Y., Was, G.S. & Zinkle, S.J. Materials Challenges for Advanced Nuclear Energy Systems. MRS Bulletin 34, 10–19 (2009). https://doi.org/10.1017/S0883769400100028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S0883769400100028

Navigation