Advertisement

Identification of genes related to resin biosynthesis in the Indian lac insect, Kerria lacca (Hemiptera: Tachardiidae)

  • Gulsaz Shamim
  • D. M. Pandey
  • R. RamaniEmail author
  • K. K. Sharma
Research Paper

Abstract

Kerria lacca (Kerr) is commercially harnessed for lac resin, which is principally an ester complex of aleuritic acid (9,10,16-trihydroxyhexadecanoic acid) and jalaric acid. The present study is an attempt made to identify the possible pathways involved in the biosynthesis of lac resin. It is proposed that acetyl-CoA is the common precursor for the biosynthesis of aleuritic acid and sesquiterpenic acids (jalaric acid). Prenyltransferases are involved in the biosynthesis of sesquiterpenes; hydroxylation of hexadecanoic acid, after chain elongation, appears to occur through the action of cytochrome P450 enzymes. Two related genes as proposed above were identified and sequenced. The diurnal rhythm of resin secretion and protein concentrations were also studied and correlated for ascertaining the active secretory phase.

Key words

lac insects aleuritic acid sesquiterpenes lac resin jalaric acid biosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bede J. C., Teal P. E. A., Goodman W. G. and Tobe S. S. (2001) Biosynthetic pathway of insect juvenile hormone III in cell suspension cultures of the sedge Cyperus iria. Plant Physiology 127, 584–593.CrossRefGoogle Scholar
  2. Blée E. (2005) Cutin monomers: biosynthesis and plant defense, pp. 261–262. In Lipid Biotechnology (edited by T. M. Kuo and H. W. Gardner). Marcel Dekker, Inc., New York.Google Scholar
  3. Cabello-Hurtado E., Batard Y., Salaün J. P., Durst F., Pinot F. and Werck-Reichhart D. (1998) Cloning, expression in yeast and functional characterization of CYP81B1, a plant P450 which catalyzes in-chain hydroxylation of fatty acids. The Journal of Biological Chemistry 273, 7260–7267.CrossRefGoogle Scholar
  4. Chappell J. and Coates R. M. (2010) Sesquiterpenes, pp. 609–610. In Comprehensive Natural Products II (edited by C. A. Townsend and Y Ebizuka). Elsevier Ltd, Oxford.CrossRefGoogle Scholar
  5. Golan K. (2008) Honeydew excretion activity in Coccus hesperidum L. (Hemiptera, Coccinea). Electronic Journal of Polish Agricultural Universities 11, 24. Available at: https://doi.org/www.ejpau.media.pl/volume11/issue2/art-24.htmlGoogle Scholar
  6. Hamilton R. J. (2008) Fatty acids: structure, occurrence, nomenclature, biosynthesis and properties, pp. 1–24. In Trans Patty Acids (edited by A. J. Dijkstra, R. J. Hamilton and W. Hamm). Blackwell Publishing Ltd, Oxford.Google Scholar
  7. Hong Y J. and Tantillo D. J. (2009) Consequences of conformational preorganization in sesquiterpene biosynthesis: theoretical studies on the formation of the bisabolene, curcumene, acoradiene, zizaene, cedrene, duprezianene, and sesquithuriferol sesquiterpenes. Journal of the American Chemical Society 131, 7999–8015.CrossRefGoogle Scholar
  8. Laethem R. M., Balazy M., Falck J. R., Laethem C. L. and Koop D. R. (1993) Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1. The Journal of Biological Chemistry 268, 12912–12918.PubMedGoogle Scholar
  9. Laethem R. M., Balazy M. and Koop D. R. (1996) Epoxidation of C18 unsaturated fatty acids by cytochromes P450 2C2 and P450 2CAA. Drug Metabolism and Disposition 24, 664–668.PubMedGoogle Scholar
  10. Liang P.-H, Ko T.-P and Wang A. H.-J. (2002) Structure, mechanism and function of prenyltransferases. European Journal of Biochemistry 269, 3339–3354.CrossRefGoogle Scholar
  11. Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193, 265–275.Google Scholar
  12. Morgan E. D. (2010) Biosynthesis in Insects. The Royal Society of Chemistry, Cambridge. 209 pp.Google Scholar
  13. Oliw E. H. (1994) Oxygenation of polyunsaturated fatty acids by cytochromes P450 monooxygenases. Progress in Lipid Research 33, 329–354.CrossRefGoogle Scholar
  14. Prasad N. (2010) Chemistry of lac resins and its constituent acids, pp. 29–42. In Processing, Chemistry and Application of Lac (edited by B. Baboo and D. N. Goswami). Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, New Delhi.Google Scholar
  15. Rice P., Longden I. and Bleasby A. (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16, 276–277.CrossRefGoogle Scholar
  16. Singh A. N., Upadhye A. B., Mhaskar V. V., Sukh Dev., Pol A. V. and Naik V. G. (1974) Chemistry of lac resin -VII: Pure lac resin — 3: structure. Tetrahedron 30, 3689–3693.CrossRefGoogle Scholar
  17. Vashishtha A., Rathi B., Kaushik S., Sharma K. K. and Lakhanpaul S. (2013) Phloem sap analysis of Schleichera oleosa (Lour) Oken, Butea monosperma (Lam) Taub, and Ziziphus mauritiana (Lam) and hemolymph of Kerria lacca (Kerr) using HPLC and tandem mass spectrometry. Physiology and Molecular Biology of Plants 19, 537–545.CrossRefGoogle Scholar

Copyright information

© ICIPE 2014

Authors and Affiliations

  • Gulsaz Shamim
    • 1
    • 2
  • D. M. Pandey
    • 1
  • R. Ramani
    • 2
    Email author
  • K. K. Sharma
    • 2
  1. 1.Department of BiotechnologyBirla Institute of TechnologyRanchiIndia
  2. 2.Indian Institute of Natural Resins and GumsRanchiJharkhandIndia

Personalised recommendations