Insecticide resistance mechanisms in three sucking insect pests of tea with reference to North-East India: an appraisal

  • Dhiraj SahaEmail author
  • Ananda Mukhopadhyay
Review Article


Tea is prepared from the tender leaves and buds of Camellia sinensis (L.). In sub-Himalayan tea plantations of North-East India, different management practices are followed to protect the tea crop against different sucking insect pests such as Helopeltis theivora (Hemiptera: Miridae), Empoasca flavescens (Homoptera: Cicadellidae) and Scirtothrips dorsalis (Thysanoptera: Thripidae). Most plantations are managed conventionally through the use of different organo-synthetic insecticides, whereas some are managed organically by using herbal and microbial insecticides. In conventional tea plantations, organo-synthetic insecticides of different functional groups (organochlorines, organopho- sphates, synthetic pyrethroids and neonicotinoids) are routinely applied round the year to keep the sucking insect pest populations under control. A variety of defence mechanisms, including enzymatic detoxification systems (carboxylesterases, glutathione S-transferases and cytochrome P450 monooxygenases), physiological tolerance and behavioural avoidance, protect insect herbivores from these hazardous compounds. Insect pests have evolved mechanisms to degrade metabolically (enzymatically) or otherwise circumvent the toxic effect of many types of chemicals synthesized as modern insecticides. The extent to which insects can metabolize and thereby degrade these toxic or otherwise detrimental chemicals is of considerable importance for their survival in an unfriendly chemical environment. These mechanisms continue to evolve as insects attempt to colonize new plant species or encounter newer molecules of synthetic insecticides. The level and type of detoxifying mechanisms differs greatly, which, therefore, results in varying toxicity among different stages, species and populations. Variation in detoxifying enzyme activity is responsible, in part, at least for the selective toxicity of different insecticides, the development of resistance to insecticides and the selection of host plants. Overexpression of these detoxifying enzymes, capable of metabolizing insecticides, can result in higher levels of metabolic tolerance/resistance to synthetic insecticides.

Key words

sucking insect tea pest insecticide resistance detoxifying enzymes Helopeltis theivora Scirtothrips dorsalis Empoasca flavescens host plants allelochemical 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosin M. (1985) Role of microsomal oxidations in insecticide degradation, pp. 647–712. In Comparative Insect Physiology, Biochemistry and Pharmacology (edited by L. I. Gilbert and G. A. Kerkut), Vol. 12. Pergamon, Oxford.Google Scholar
  2. Ananthakrishnan T. N. (1993) Bionomics of thrips. Annual Review of Entomology 38, 71–92.Google Scholar
  3. Ananthakrishnan T. N. and Jagadish A. (1966) Coffee and tea infesting thrips from Anamalais (S. India) with description of two new species of Taeniothrips Serville. Indian Journal of Entomology 28, 250–257.Google Scholar
  4. Andrews E. A. (1913) Entomologist’s notes. Quarterly Journal of the Scientific Department of the Indian Tea Association, Calcutta 1, 28–29.Google Scholar
  5. Andrews E. A. (1915) Insect pests of tea in North East India during the season 1915. Quarterly Journal of the Scientific Department of the Tea Association, Calcutta 4, 1–6.Google Scholar
  6. Andrews E. A. (1916) Insect pests of tea in North East India during the season 1915. Quarterly Journal of the Scientific Department of the Tea Association, Calcutta 1916, 1–6.Google Scholar
  7. Andrews E. A. (1919) Insect pests of tea. Quarterly Journal of the Scientific Department of the Indian Tea Association, Calcutta 7, 22–25.Google Scholar
  8. Andrews E. A. (1925) The thrips pests of tea in Darjeeling. Indian Tea Association Scientific Department Quarterly Journal, 60–105.Google Scholar
  9. Andrews E. A. and Tunstall A. C. (1915) Notes on the spraying of tea. Bulletin of the Indian Tea Association Calcutta 1, 1–75.Google Scholar
  10. Anonymous (1941) Division of Entomology, Report Department of Agriculture Malaya 1940. pp. 7–8.Google Scholar
  11. Awang A., Muhamad R. and Chong K. K. (1988) Comparative merits of cocoa pod and shoot as food sources of the mired Helopeltis theobromae Miller. The Planter 64, 100–104.Google Scholar
  12. Bagnall R. S. (1918a) XXII — brief descriptions of new Thysanoptera — IX. The Annals and Magazine of Natural History 9th Series 1, 201–221.Google Scholar
  13. Bagnall R. S. (1918b) On two species of Physothrips (Thysanoptera) injurious to tea in India. Bulletin of Entomological Research 9, 61–64.Google Scholar
  14. Bagnall R. S. (1924) On a new injurious thrips affecting tea in India. Bulletin of Entomological Research 14, 455.Google Scholar
  15. Barbora B. C. and Biswas A. K. (1996) Use pattern of pesticides in tea estates of North East India. Two and a Bud 47, 19–21.Google Scholar
  16. Benjamin D. M. (1968a) Insects and mites on tea in Africa and adjacent islands. East African Agricultural and Forestry Journal 33, 345–357.Google Scholar
  17. Benjamin D. M. (1968b) Economically important insects and mites on tea in East Africa. East African Agricultural and Forestry Journal 34, 1–16.Google Scholar
  18. Bernays E. A. (1998) Evolution of feeding behavior in insect herbivores: success seen as different ways to eat without being eaten. Bioscience 48, 35–44.Google Scholar
  19. Berrada S., Fournier D., Cuany A. and Nguyen T. X. (1994) Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera: Psyllidae): altered acetylcholinesterase and detoxifying oxidases. Pesticide Biochemistry and Physiology 48, 41–47.Google Scholar
  20. Bhuyan M. and Bhattacharyya P. R. (2006) Feeding and oviposition preference of Helopeltis theivora (Hemiptera: Miridae) on tea in Northeast India. Insect Science 13, 485–488.Google Scholar
  21. Bora S., Rahman A., Sarmah M. and Gurusubramanian G. (2007) Relative toxicity of pyrethroid and nonpyrethroid insecticides against male and female tea mosquito bug (Darjeeling strain). Journal of Entomological Research 37, 37–41.Google Scholar
  22. Brattsten L. B. (1988) Potential role of plant allelochemicals in the development of insecticide resistance, pp. 313–348. In Novel Aspects of Insect-Plant Interactions (edited by P. Barbosa and D. K. Letourneau). John Willey & Sons, New York.Google Scholar
  23. Brattsten L. B., Wilkinson C. F. and Eisner T. (1977) Herbivore-plant interactions: mixed function oxidases and secondary plant substances. Science 196, 1349–1352.PubMedPubMedCentralGoogle Scholar
  24. Brown T. M. and Brogdon W. G. (1987) Improved detection of insecticide resistance through conventional and molecular techniques. Annual Review of Entomology 32, 145–162.PubMedPubMedCentralGoogle Scholar
  25. Casida J. E. (1993) Insecticide action at the GABA-gated chloride channel: recognition, progress, and prospects. Archives of Insect Biochemistry and Physiology 22, 13–23.PubMedPubMedCentralGoogle Scholar
  26. Chaudhuri T. C. (1999) Pesticide residues in tea, pp. 369–378. In Global Advances in Tea Science (edited by N. K. Jain). Aravali Books, New Delhi.Google Scholar
  27. Chen L. S. (1979) Thrips infesting tea in Taiwan. Plant Protection Bulletin, Taiwan 21, 377–382.Google Scholar
  28. Chen H. T. and Tseng H. K. (1988) Field tests of several new chemicals for control of tea green leaf-hopper, Kanzawai spider mite and tea tortrix. Taiwan Tea Research Bulletin 7, 1–14.Google Scholar
  29. Chen Z. M. and Chen X. F. (1989) An analysis of world tea fauna. Journal of Tea Science 9, 73–88.Google Scholar
  30. Chen S., Yang Y. and Wu Y. (2005) Correlation between Fenvalrate resistance and cytochrome P450 mediated 0- demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 98, 943–946.PubMedPubMedCentralGoogle Scholar
  31. Cheo M. T. (1936) A preliminary list of the insects and arachnids injurious to economic plants in China. Peking Natural History Bulletin 10, 5–37, 93–114, 167–182, 291–308, 11: 119–127, 281–286, 417–432.Google Scholar
  32. Cilek J. E., Dahlman D. L. and Knapp F. W. (1995) Possible mechanism of diazinon negative cross-resistance in pyrethroid-resistant horn flies (Diptera: Muscidae). Journal of Economic Entomology 88, 520–524.Google Scholar
  33. Claudianos C., Ranson H., Johnson R. M., Biswas S., Schuler M. A., Berenbaum M. A., Feyereisen R. and Oakeshott J. G. (2005) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15, 615–636.Google Scholar
  34. Cohen M. B., Schuler M. A. and Berenbaum M. R. (1992) A host-inducible cytochrome P-450 from a hostspecific caterpillar: Molecular cloning and evolution. Proceedings of the National Academy of Sciences (USA) 89, 10, 920–10, 924.Google Scholar
  35. Cohen-Stuart C. P. (1922) Lets overden steek van Helopeltis. Mededeelingen van het Proefstation voor Thee 81, 24–25.Google Scholar
  36. Corbett G. H. (1930) Entomological notes first quarter 1930. Malayan Agricultural Journal 18, 212–214.Google Scholar
  37. Corbett G. H. (1932) Division of Entomology. Annual Report for the Year 1931 General Series, Department of Agriculture Straits Settlement and Federated Malay States No. 12. pp. 41–47.Google Scholar
  38. Cranham J. E. (1966) Tea pests and their control. Annual Review of Entomology 11, 491–514.Google Scholar
  39. Das G. M. (1962) Problems of pesticide residues in tea. Two and a Bud 9, 17–25.Google Scholar
  40. Das G. M. (1963) Some important pests of tea. Two and a Bud 10, 4–8.Google Scholar
  41. Das G. M. (1965) Pests of tea in North East India and their control. Memorandom No. 27, pp. 169–173, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam.Google Scholar
  42. DeLong D. M. (1971) The bionomics of leafhoppers. Annual Review of Entomology 16, 179–210.Google Scholar
  43. Demokidov K. E. (1916) On the life history of the tea moth Parametriotes theae Kusn. Revue Russed’Entomologie 15, 618–626.Google Scholar
  44. Després L., David J. P. and Gallet C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 22, 298–307.PubMedPubMedCentralGoogle Scholar
  45. Dethier V. G. (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8, 33–54.Google Scholar
  46. Doğramaci M., Arthurs S. P., Chen J., McKenzie C., Irrizary F. and Osborne L. (2011) Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae). Biological Control 59, 340–347.Google Scholar
  47. Dominguez-Gil O. E. and McPheron B. A. (1999) Herbivors hosts influence on insecticide resistance: a review. Revista de la Facultad de Agronomia 16, 127–140.Google Scholar
  48. Dominguez-Gil O. E. and McPheron B. A. (2000) Effect of diet on detoxification enzyme activity of Platynota idaeusalis (Walker) (Lepidoptera: Tortricidae) larval strains. Revista de la Facultad de Agronomia (LUZ) 17, 119–138.Google Scholar
  49. Drabek J. and Neumann R. (1985) Proinsecticides, pp. 35–86. In Insecticides (edited by D. H. Huston and T. R. Roberts). Wiley, London.Google Scholar
  50. Du Pasquier R. (1924) Renseignments sur les theiers d’Indochine et sur leur culture. Handelingen van het thee-congres met tentoonstelling, gehouden te Bandoeng. Kolff, Weltrevreden. pp. 297–302.Google Scholar
  51. Du Pasquier R. (1932) Principales maladies parasitaires du theier et du cafeier en Extreme-Orient. Bulletin Economique de l’Indochine, Hanoi-Haiphong 35, 590B–618B.Google Scholar
  52. Dzolkhifli O., Khoo K. C., Muhamad R. and Ho C. T. (1986) Preliminary study of resistance in four populations of Helopeltis theobromae Miller (Hemiptera: Miridae) to γ-HCH, propoxur and dioxacarb. Cocoa and Coconuts: Progress and Outlook. Incorporated Society of Planters, Kuala Lumpur. pp. 317–323.Google Scholar
  53. Ehrlich P. R. and Raven P. H. (1964) Butterflies and plants: a study in coevolution. Evolution 18, 586–608.Google Scholar
  54. El-Abdin Salam A. Z. and Pinsker W. (1981) Effects of selection for resistance to organophosphorus insecticides on 2 esterase loci in Drosophila melanogaster. Genetica (The Hague) 55, 11–14.Google Scholar
  55. Eldefrawi A. T. (1985) Acetylcholinesterases and anticholinesterases, pp. 115–130. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology (edited by G. A. Kerkut and L. I. Gilbert). Vol. 12. Pergamon Press, Oxford.Google Scholar
  56. Evans J. W. (1952) The Injurious Insects of the British Commonwealth. Commonwealth Institute of Entomology, London. 242 pp.Google Scholar
  57. Ferrari J. A., Morse J. G., Georghiou G. P. and Sun Y. (1993) Elevated esterase activity and acetylcholinesterase insensitivity in citrus thrips (Thysanoptera: Thripsidae) populations from the San Joaquin Valley of California. Journal of Economic Entomology 86, 1645–1650.Google Scholar
  58. Feyereisen R. (1995) Molecular biology of insecticide resistance. Toxicology Letters 82–83, 83–90.Google Scholar
  59. Feyereisen R. (1999) Insect P450 enzymes. Annual Review of Entomology 44, 507–533.PubMedPubMedCentralGoogle Scholar
  60. Feyereisen R. (2005) Insect cytochrome P450, pp. 1–77. In Comprehensive Molecular Insect Science: Biochemistry and Molecular Biology (edited by L. I. Gilbert, K. Iatrou and S. S. Gill). Vol. 4. Elsevier, Oxford, London.Google Scholar
  61. Feyereisen R. (2012) Insect CYP genes and P450 enzymes, pp. 236–316. In Insect Molecular Biology and Biochemistry (edited by L. I. Gilbert). Academic Press, London.Google Scholar
  62. Fletcher T. B. (1920) Annotated list of Indian crop pests, pp. 33–314. In Report of the Proceedings of the Third Entomological Meeting. 3–15 February 1919, Pusa (edited by T. B. Fletcher). Vol. 1. Superintendent Government Printing, Calcutta.Google Scholar
  63. Fofana M. (1978) Culture du theier de Chine en Republique du Mali. Cafe-Cacao-The 22, 139–153.Google Scholar
  64. Forgash A. J., Cook B. J. and Riley R. C. (1962) Mechanisms of resistance in diazinon-selected multi resistant Musca domestica. Journal of Mechanisms of Economic Entomology 55, 544–551.Google Scholar
  65. Foster-Barham C. B. (1957) Tea mosquito bug (Helopeltis spp.). Tea Research Institute of East Africa Quarterly Circular 1, 29–34.Google Scholar
  66. Fournier D. and Mutero A. (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comparative Biochemistry and Physiology 108C, 19–31.Google Scholar
  67. Fragoso D. B., Guedes R. N. C., Picanco M. C. and Zambolim L. (2002) Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Bulletin of Entomological Research 92, 203–212.PubMedPubMedCentralGoogle Scholar
  68. Francis F., Vanhaelen N. and Haubruge E. (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives of Insect Biochemistry and Physiology 58, 166–174.PubMedPubMedCentralGoogle Scholar
  69. Ge Z. L. (1991) A new species of genus Penthimia (Homoptera: Cicadelloidea) on tea plants. Acta Entomologica Sinica 34, 206–207 (in Chinese).Google Scholar
  70. Georghiou G. P. (1972) The evolution of resistance to pesticides. Annual Review of Ecology and Systematics 3, 133–168.Google Scholar
  71. Ghauri M. S. K. (1964) A new species of Empoasca Walsh (Homoptera; Cicadelloidea) attacking tea in Argentina. Annals and Magazine of Natural History 7, 189–192.Google Scholar
  72. Ghesquiere J. (1939) Helopeltis du Kivu et d’Ituri. Revue de zoologie et de botanique africaines 33, 67–71.Google Scholar
  73. Glendinning J. I. (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomologia Experimentalis et Applicata 104, 15–25.Google Scholar
  74. Goggin F. L. (2007) Plant-aphid interactions: molecular and ecological perspectives. Current Opinion in Plant Biology 10, 399–408.Google Scholar
  75. Gogoi B., Choudhury K., Sarmah M., Rahman A. and Borthakur M. (2011) Studies on host range of Helopeltis theivora. In Book of Abstracts, p. 65. World Tea Science Congress, Jorhat.Google Scholar
  76. Gopalan M. and Perumal R. S. (1973) Studies on the incidence of tea-mosquito bug (Helopeltis antonii S.) on some varieties of guava. Madras Agricultural Journal 60, 81–83.Google Scholar
  77. Gowdey, C. C. (1917). Report of the Entomologist, Annual Report Uganda Department of Agriculture for the Year Ending 31st March. pp. 32–37.Google Scholar
  78. Guedes R. N. C., Zhu K. Y., Kambhampati S. and Dover B. A. (1997) An altered acetylcholinesterase conferring negative cross-insensitivity to different insecticidal inhibitors in organophosphate-resistant lesser grain borer, Rhyzopertha dominica. Pesticide Biochemistry and Physiology 58, 55–62.Google Scholar
  79. Gurusubramanian G. and Bora S. (2007) Relative toxicity of some commonly used insecticides against adults of Helopeltis theivora Waterhouse (Miridae: Hemiptera) collected from Jorhat area tea plantations, South Assam, India. Resistant Pest Management Newsletter 17, 8–12.Google Scholar
  80. Gurusubramanian G. and Bora S. (2008) Insecticidal resistance to tea mosquito bug, Helopeltis theivora Waterhouse (Miridae: Heteroptera) in North East India. Journal of Environmental Research Development 2, 560–567.Google Scholar
  81. Gurusubramanian G., Rahman A., Sarmah M., Roy S. and Bora S. (2008a) Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. Journal of Environmental Biology 29, 813–826.Google Scholar
  82. Gurusubramanian G., Senthilkumar N., Bora S., Roy S. and Mukhopadhyay A. (2008b) Change in susceptibility in male Helopeltis theivora Waterhouse (Jorhat population, Assam, India) to different classes of insecticides. Resistant Pest Management Newsletter 18, 36–39.Google Scholar
  83. Hainsworth E. (1952) Tea Pests and Diseases and their Control, with Special Reference to North-east India. W. Heffer and Sons, Cambridge. 130 pp.Google Scholar
  84. Hama H. (1983) Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, pp. 299–331. In Pest Resistance to Pesticides (edited by G. P. Georghiou and T. Saito). Plenum Press, New York.Google Scholar
  85. Hargreaves, H. (1936) Report of the Government Entomologist for 1935. Annual Report of the Department of Agriculture, Uganda 1935. pp. 8–11.Google Scholar
  86. Harold J. A. and Ottea J. A. (1997) Toxicological significance of enzyme activities in profenofosresistant tobacco budworms. Heliothis virescens (F.). Pesticide Biochemistry and Physiology 58, 23–33.Google Scholar
  87. Harris W. V. (1933a) The mosquito blight of tea. Planter 1, 13 & 15.Google Scholar
  88. Harris, W. V. (1933b) Report of the Assistant Entomologist. Annual Report of the Department of Agriculture, Tanganyika Territory 1932. pp. 73–75.Google Scholar
  89. Hatano R., Scott J. G. and Dennehy T. J. (1992) Enhanced activation is the mechanism of negative crossresistance to chlorpyrifos in the dicofol-IR strain of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 85, 1088–1091.Google Scholar
  90. Hazarika L. K., Bhuyan M. and Hazarika B. N. (2009) Insect pests of tea and their management. Annual Review of Entomology 54, 267–284.Google Scholar
  91. Hung C. F., Kao C. H., Liu C. C., Lin J. G. and Sun C. N. (1990) Detoxifying enzymes of selected insect species with chewing and sucking habits. Journal of Economic Entomology 83, 361–365.Google Scholar
  92. Hutchinson M. T., Fernando E. F. W. and Calnaido D. (1963) Surveys of leaf-hoppers associated with up country tea. Tea Quarterly 34, 85–88.Google Scholar
  93. Hutson J. C. (1920) Report of the Entomologist. Ceylon Department of Agriculture Administration 1919. pp. c8–c10Google Scholar
  94. Ingram W. R., Davies J. C. and McNutt D. E. N. (1966) Agricultural Pest Handbook. Department of Agriculture, Uganda. 50 pp.Google Scholar
  95. Ishihara T. (1962) The black-tipped leafhopper, Bothrogonia ferruginea Auct of Japan and Formosa. Japanese Journal of Applied Entomology and Zoology 6, 289–292.Google Scholar
  96. Jack R.W. (1940) Report of the Division of Entomology for the year ending 31st December 1939. 35 pp.Google Scholar
  97. Jensen S. E. (1998) Acetylcholinesterase activity associated with methiocarb resistance in a strain of western flower thrips, Frankliniella occidentalis (Pergande). Pesticide Biochemistry and Physiology 61, 191–200.Google Scholar
  98. Jensen S. E. (2000) Mechanisms associated with methiocarb resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology 93, 461–471.Google Scholar
  99. Jia-Xiang Z., Jian-Wei F. U., Qing-Quan S. U., Jian-Yu L. I. and Zhi-Xiong Z. (2009) The regional diversity of resistance of Tea Green Leafhopper (Gothe), to insecticides in Fujian Province. Journal of Tea Science 2009-02.Google Scholar
  100. Jin M. and Baoyu H. (2007) Probing behaviour of tea green leafhopper on different tea plant cultivars. Acta Ecologica Sinica 27, 3973–3982.Google Scholar
  101. John S. and Graeme D. R. (2008) Ecological factors influencing the evolution of insects’ chemical defences. Behavoural Ecology 19, 146–153.Google Scholar
  102. Johnson K. S. (1999) Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist saturniid silkmoths. Journal of Chemical Ecology 25, 253–269.Google Scholar
  103. Kalita H., Handique R., Singh K. and Hazarika L. K. (1995) Feeding behaviour of tea mosquito bug. Two and a Bud 42, 34–35.Google Scholar
  104. Kaloshian I. and Walling L. L. (2005) Hemipterans as plant pathogens. Annual Review of Plant Biology 43, 491–521.Google Scholar
  105. Kanga L. H. B. and Plapp F. W. J. (1995) Target-site insensitivity as the mechanism of resistance to organophosphorus, carbamate, and cyclodiene insecticides in tobacco budworm adults. Journal of Economic Entomology 88, 1150–1157.Google Scholar
  106. Karny H. H. (1921) Beitrage zur Malayischen Thysanopteren fauna IV-V. Treubia 2, 37–83.Google Scholar
  107. Karny H. H. (1926) Beitrage zur malayischen Thysanopteren fauna IX. Ueber puppenkokons von Anaphothrips. Treubia 9, 6–10.Google Scholar
  108. Karunker I., Benting J., Lueke B., Ponge T., Nauen R., Roditakis E., Vontas J., Gorman K., Denholm I. and Morin S. (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology 38, 634–644.Google Scholar
  109. Karunker I., Morou E., Nikou D., Nauen R., Sertchook R., Stevenson B. J., Paine M. J. I., Morin S. and Vontas J. (2009) Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology 39, 697–706.Google Scholar
  110. Kawai A. (1997) Prospect for integrated pest management in tea cultivation in Japan. Japan Agricultural Research Quarterly 31, 213–217.Google Scholar
  111. King C. B. R. (1941) Report of the entomologist for 1940. Bulletin of the Tea Research Institute, Ceylon 22, 43–49.Google Scholar
  112. Komagata O., Kasai S. and Tomita T. (2010) Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochemistry and Molecular Biology 40, 146–152.PubMedPubMedCentralGoogle Scholar
  113. Koningsberger J. C. (1908) Tweede overzicht der schadelijke en nuttige insekten van Java. Mededeelingen uitgaande van het Departement van Landbouw 6, 1–113.Google Scholar
  114. Konno T. E. H. and Dauterman W. C. (1989) Studies on methyl parathion resistance in Heliothis virescens. Pesticide Biochemistry and Physiology 33, 189–199.Google Scholar
  115. Krieger R. I., Feeny P. P. and Wilkinson C. F. (1971) Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172, 579–581.PubMedPubMedCentralGoogle Scholar
  116. Kuoh C. L. and Kuoh J. L. (1983) New species of Pseudonirvana (Homoptera: Nirvanidae). Acta Entomologica Sinica 26, 316–325.Google Scholar
  117. Kwon Y. J. (1983) Classification of leafhoppers of the subfamily Cicadellinae from Korea (Homoptera: Auchenorrhyncha). Korean Journal of Entomology 13, 15–25.Google Scholar
  118. Le Pelley R. H. (1959) Agricultural Insects of East Africa. East African High Commission, Nairobi. 307 pp.Google Scholar
  119. Leach R. (1935) Insect injury stimulating fungal attack on plants. A stem canker, an angular leaf spot, a fruit scab and a fruit rot of mangoes caused by Helopeltis bergrothi Reuter (Capsidae). Annals of Applied Biology 22, 525–537.Google Scholar
  120. Lee K. (1991) Glutathione-S-transferase activities in phytophagous insects: Induction and inhibition by plant phototoxins and phenols. Insect Biochemistry 21, 353–361.Google Scholar
  121. Lee S. C., Kim D. I. and Kim S. S. (1995) Ecology of Tetranychus kanzawai and its natural enemies at tea tree plantation. Korean Journal of Applied Entomology 34, 249–255 (in Korean).Google Scholar
  122. Leefmans S. (1915) De theezoadvlieg. Mededeelingen van het Proefstation voor Thee 35. 15 pp.Google Scholar
  123. Leefmans S. (1916) Bijdrage tot het Helopeltis-vraagstuk voor de thee. Mededeelingen van het Proefstation voor Thee 50. 214 pp.Google Scholar
  124. Lever R. J. A. W. (1949) The tea mosquito bug (Helopeltis spp.) in the Cameron Highlands. Malayan Agricultural Journal 32, 91–109.Google Scholar
  125. Levitin E. and Cohen E. (1998) The involvement of ace-tylcholinesterase in resistance of the California red scale, Aonidiella aurantii to organophosphorus pesticides. Entomologia Experimentalis et Appllicata 88, 115–121.Google Scholar
  126. Li X., Schuler M. A. and Berenbaum M. R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52, 231–253.PubMedPubMedCentralGoogle Scholar
  127. Liang Y. R., Lu J. L., Zhang L. Y., Wu S. and Wu Y. (2003) Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chemistry 80, 283–290.Google Scholar
  128. Liang Y. R., Ma W. Y., Lu J. L. and Wu Y. (2006) Comparison of chemical composition of Ilex latifolia Thumb and Camellia sinensis L. Food Chemistry 75, 339–343.Google Scholar
  129. Liew V. K., Dzolkhifli O. and Muhamad R. (1992) Susceptibility of Helopeltis theobromae collected from Sg. Tekam to three insecticides. Paper presented at the Pesticides in Perspective. Malaysian Agricultural Chemicals Association, Kuala Lumpur. pp. 28–29.Google Scholar
  130. Lindroth R. L. (1989) Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomologia Experimentalis et Applicata 50, 29–35.Google Scholar
  131. Lindroth R. L., Scriber J. M. and Hsia M. T. S. (1988) Chemical ecology of the tiger swallowtail: mediation of host use by phenolic glycosides. Ecology 69, 814–822.Google Scholar
  132. Markussen M. D. K. and Kristensen M. (2010) Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L. Pesticide Biochemistry and Physiology 98, 50–58.Google Scholar
  133. Martin T., Chandre F., Ochou O. G., Vaissayre M. and Fournier D. (2002) Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pesticide Biochemistry and Physiology 74, 17–26.Google Scholar
  134. Martin T., Chandre F., Ochou O. G., Vaissayre M. and Fournier D. (2003) Oxidases responsible for resistance to pyrethroids sensitize Helicoverpa armigera (Hubner) to triazophos in West Africa. Insect Biochemistry and Molecular Biology 33, 883–887.PubMedPubMedCentralGoogle Scholar
  135. Martinez-Torres D., Foster S. P., Field L. M., Devonshire A. L. and Williamson M. S. (1999) A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Molecular Biology 8, 339–346.PubMedPubMedCentralGoogle Scholar
  136. Maymo A. C., Cervera A., Garcera D. M., Bielza P. and Martinez-Pardo R. (2006) Relationship between esterase activity and acrinathrin and methiocarb resistance in field populations of western flower thrips, Frankliniella occidentalis. Pest Management Science 62, 1129–1137.PubMedPubMedCentralGoogle Scholar
  137. Maymo A. C., Cervera A., Sarabia R., Martinez-Pardo R. and Garcera M. D. (2002) Evaluation of metabolic detoxifying enzyme activities and insecticide resistance in Frankliniella occidentalis. Pest Management Science 58, 928–934.PubMedPubMedCentralGoogle Scholar
  138. Medler J. T. (1941) The nature of injury to alfalfa caused by Empoasca fabae (Harris). Annals of the Entomological Society of America 34, 439–450.Google Scholar
  139. Menzel R. (1929) De plagen van de thee in Nederlansche-Indie (Java en Sumatra) en hare bestrijding. Archief voor de theecultuur in Nederlandsch-Indie. 106 pp.Google Scholar
  140. Minamikawa J. (1957) A list of the tea injurious insects in Japan. Botyu Kagaku 22, 149–154.Google Scholar
  141. Mir A.A. (1990) Helopeltis in tea. Pamphlet No. 12. Bangladesh Tea Research Institute. 8 pp.Google Scholar
  142. Mitter C., Farrell B. D. and Futuyma D. J. (1991) Phylogenetic studies of insect/plant interactions: Insights into the genesis of diversity. Trends in Ecology and Evolution 6, 290–293.PubMedPubMedCentralGoogle Scholar
  143. Mochizuki M., Ohtaishi M. and Honma K. (1994) Yellow sticky trap of lat type is useful for monitoring the occurrence of tea green leafhopper, Empoasca onukii Matsuda (Homoptera: Cicadellidae), in tea fields. Bulletin of the National Research Institute of Vegetables, Ornamental Plants and Tea 7, 29–36 (in Japanese).Google Scholar
  144. Moores G. D., Devine G. J. and Devonshire A. L. (1994) Insecticide-sensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pesticide Biochemistry and Physiology 49, 114–120.Google Scholar
  145. Mound L. A. and Palmer G. M. (1981) Identification, distribution and host plants of the pest species of Scirtothrips (Thysanoptera: Thripidae). Bulletin of Entomological Research 71, 467–479.Google Scholar
  146. Mukerjea T. D. (1968) Thiodan: a broad spectrum new insecticide. Two and a Bud 15, 6–10.Google Scholar
  147. Mukhopadhyay A. and Roy S. (2009) Changing dimensions of IPM in the tea plantations of the north eastern sub-Himalayan region, pp. 290–302. In IPM Strategies to Combat Emerging Pests in the Current Scenario of Climate Change (edited by V. V. Ramamurthy, G. P. Gupta and S. N. Puri). Entomological Society of India, IARI, New Delhi.Google Scholar
  148. Mullin C.A. (1985) Detoxification enzyme relationships in arthropods of differing feeding strategies, pp. 267278. In Bioregulators for Pest Control (edited by P. A. Hedin). ACS Symposium Series 276. American Chemical Society, Washington, DC.Google Scholar
  149. Mullin C. A. (1986) Adaptive divergence of chewing and sucking arthropods to plant allelochemicals, pp. 175–209. In Molecular Aspects of Insect-Plant Associations (edited by L. B. Brattsten and S. Ahmad). Plenum Press, New York.Google Scholar
  150. Mullin C. A. (1988) Adaptive relationships of epoxide hydrolase in herbivorous arthropods. Journal of Chemical Ecology 14, 1867–1888.PubMedPubMedCentralGoogle Scholar
  151. Mullin C.A. and Scott J.G. (eds) (1992) Molecular mechanisms of insecticide resistance: diversity among insects. ACS Symposium Series 505. American Chemical Society, Washington, DC. 322 pp.Google Scholar
  152. Muraleedharan N. (2007) Tea insects: ecology and control, pp. 672–674. In Encyclopedia of Pest Management. CRC Press, London.Google Scholar
  153. Musser R. O., Hum-Musser S. M., Eichenseer H., Peiffer M., Ervin G., Murphy J. B. and Felton G. W. (2002) Herbivory: caterpillar saliva beats plant defences — a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416, 599–600.PubMedPubMedCentralGoogle Scholar
  154. Mutero A., Pralavorio M., Bride J. M. and Fournier D. (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences USA 91, 5922–5926.Google Scholar
  155. Nian-wu W., Jin-han X. U., Zheng C., Hui W., Ling-ling Z. and Xiong G. (2004) Resistance level of Empoasca vitis (Gothe) in different tea plantations [J]. Journal of Tea Science, 2004-02.Google Scholar
  156. Okada T. and Kudo I. (1982) Relative abundance and phenology of Thysanoptera in a tea field. Japanese Journal of Applied Entomology and Zoology 26, 96–102.Google Scholar
  157. Omata R. (1997) Seasonal occurrence in tea field and the susceptibility of some acaricides and insecticides against Scolothrips takahashii Priesner, the predator of kanzawa spider mite. Proceedings of the Kanto-Tosan Plant Protection Society No. 44, 267–270.Google Scholar
  158. Oppenoorth F. J. (1985) Biochemistry and genetics of insecticide resistance, pp. 731–773. In Comparative Insect Physiology, Biochemistry and Pharmacology (edited by G. A. Kerkut and L. I. Gilbert). Vol. 12. Pergamon Press, Oxford.Google Scholar
  159. Pathak S. K. and Mukhopadhyay A. (2005) Population variation in common thrips Mycterothrips setiventris Bagnak (Thripidae: Thysanoptera) on Darjeeling tea. Journal of Plantation Crops 33, 210–215.Google Scholar
  160. Patil V. L. and Guthrie F. E. (1979) Cuticular lipids of two resistant and a susceptible strain of houseflies. Pesticide Science 10, 399–406.Google Scholar
  161. Peregrine W. T. H. (1991) Annatto — a possible trap crop to assist control of the mosquito bug (Helopeltis schoutedeni Reut.) in tea and other crops. Tropical Pest Management 37, 429–430.Google Scholar
  162. Petch T. and Light S. S. (1928) Diseases and pests of tea in Nyasaland. Tea Quarterly (Journal of the Tea Research Institute of Ceylon) 1, 80–81.Google Scholar
  163. Pimprale S. S., Besco C. L., Bryson P. K. and Brown T. M. (1997) Increased susceptibility of pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae) to chlorfenapyr. Journal of Economic Entomology 90, 49–54.Google Scholar
  164. Price N. R. (1991) Insect resistance to insecticides: mechanisms and diagnosis. Comparative Biochemistry and Physiology 100C, 319–326.Google Scholar
  165. Rahman A., Sarmah M., Phukan A. K., Roy S., Sannigrahi S., Borthakur M. and Gurusubramanian G. (2005) Approaches for the management of tea mosquito bug, Helopeltis theivora Waterhouse (Miridae: Heteroptera), pp. 146–161. In Proceedings of the 34th Tocklai Conference’ Strategies for Quality in the Digital Era’ (edited by A. K. Barooah, M. Borthakur and J. N. Kalita). Tocklai Experimental Station, TRA, Jorhat, Assam.Google Scholar
  166. Rattan P. S. (1992a) Pest and disease control in Africa, pp. 331–352. In Tea: Cultivation to Consumption (edited by K. C. Wilson and M. N. Clifford). Chapman & Hall, London.Google Scholar
  167. Rattan P. S. (1992b) Thrips (Scirtothrips aurantii), synthetic pyrethroid insecticides and alternatives. Quarterly Newsletter — Tea Research Foundation (Central Africa), pp. 9–11.Google Scholar
  168. Rau S. A. (1935) Report of the Entomologist. Annual Report of the Tea Department of the United Planters Association of South India for 1934–35. pp. 10–25.Google Scholar
  169. Rau S.A. (1936) Report of the Entomologist. Annual Report of the Tea Department of the United Planters Association of South India for 1935–36. pp. 35–45.Google Scholar
  170. Reddy G. P. V., Prasad V. D. and Rao R. S. (1992) Relative resistance in chilli thrips, Scirtothrips dorsalis (Hood) populations in Andhra Pradesh to some conventional insecticides. Indian Journal of Plant Protection 20, 218–222.Google Scholar
  171. Reilly C. C., Gentry C. R. and McKay J. R. (1987) Biochemical evidence for resistance of root stocks to the peach tree borer and species separation of peach tree borer and lesser peach tree borer (Lepidoptera: Sesiidae) on peach trees. Journal of Economic Entomology 80, 338–343.Google Scholar
  172. Roy S. (2010) Evaluation of the levels of insecticide susceptibility of Helopeltis theivora Waterhouse (Heteroptera: Miridae) and development of an efficacious strategy for management of the pest in Dooars tea plantation of North Bengal. PhD thesis, University of North Bengal, India. p. 212.Google Scholar
  173. Roy S. and Mukhopadhyay A. (2011) Insecticide-induced change in egg-laying strategy of Helopeltis theivora (Hemiptera: Miridae) on tea shoot (Camellia sinensis). Proceedings of Zoological Society 64, 54–56.Google Scholar
  174. Roy S., Mukhopadhyay A. and Gurusubramanian G. (2008a) Use pattern of insecticides in tea estates of the Dooars in North Bengal, India. North Bengal University Journal of Animal Science 2, 35–40.Google Scholar
  175. Roy S., Mukhopadhyay A. and Gurusubramanian G. (2008b) Susceptibility status of Helopeltis theivora Waterhouse (Heteroptera: Miridae) to the commonly applied insecticides in the tea plantation of the subHimalayan Dooars area of North Bengal, India. Resistant Pest Management Newsletter 18, 10–17.Google Scholar
  176. Roy S., Gurusubramanian G. and Mukhopadhyay A. (2008c) Variation in endosulfan susceptibility and body lipid content of Helopeltis theivora Waterhouse (Heteroptera: Miridae) in relation to the use pattern of the insecticide, in sub-Himalayan Dooars tea plantations. Journal of Plantation crops 36, 388–392.Google Scholar
  177. Roy S., Mukhopadhyay A. and Gurusubramanian G. (2009) The synergists action of piperonyl butoxide on toxicity of certain insecticides applied against Helopeltis theivora Waterhouse (Heteroptera: Miridae) in the Dooars tea plantations of North Bengal India. Journal of Plant Protection Research 49, 226–229.Google Scholar
  178. Roy S., Gurusubramanian G. and Mukhopadhyay A. (2010a) Neem-based integrated approaches for the management of tea mosquito bug, Helopeltis theivora Waterhouse (Miridae: Heteroptera) in tea. Journal of Pest Science 83, 143–148.Google Scholar
  179. Roy S., Mukhopadhyay A. and Gurusubramanian G. (2010b) Development of resistance to endosulphan in populations of the tea mosquito bug Helopeltis theivora (Heteroptera: Miridae) from organic and conventional tea plantations in India. International Journal of Tropical Insect Science 30, 61–66.Google Scholar
  180. Roy S., Mukhopadhyay A. and Gurusubramanian G. (2011) Resistance to insecticides in field-collected populations of tea mosquito bug (Helopeltis theivora Waterhouse) from the Dooars (North Bengal, India) tea cultivations. Journal of Entomological Research Society 13, 37–44.Google Scholar
  181. Saha D. and Mukhopadhyay A. (2008) Variation in esterase activity of Empoasca flavescens Fabricius in different tea estates of Terai. North Bengal University Journal of Animal Sciences 2, 39–41.Google Scholar
  182. Saha D., Mukhopadhyay A. and Mahadur M. (2010) Variation in detoxifying enzymes of Assam thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) from organically and insecticide managed tea plantations. North Bengal University Journal of Animal Science 4, 45–52.Google Scholar
  183. Saha D., Mukhopadhyay A. and Mahadur M. (2012a) Detoxifying enzymes activity in tea greenfly, Empoasca flavescens Fabricius (Homoptera: Jassidae) from sub Himalayan tea plantations, pp. 257–266. In Proceedings of National Symposium on Biodiversity Status and Conservation Strategies with special Reference to North East India (edited by R. Varatharajan). Centre for Advanced Studies, Department of Life Sciences, Manipur University, Manipur, India.Google Scholar
  184. Saha D., Roy S. and Mukhopadhyay A. (2012b) Seasonal incidence and enzyme-based susceptibility to synthetic insecticides in two upcoming sucking insect pests of tea. Phytoparasitica 40, 105–115.Google Scholar
  185. Saha D., Roy S. and Mukhopadhyay A. (2012c) Insecticide susceptibility and activity of major detoxifying enzymes in female Helopeltis theivora Waterhouse (Heteroptera: Miridae) from sub-Himalayan tea plantations of North Bengal, India. International Journal of Tropical Insect Science 32, 85–93.Google Scholar
  186. Saha D., Mukhopadhyay A. and Bahadur M. (2012d) Effect of host plants on fitness traits and detoxifying enzymes activity of Helopeltis theivora, a major sucking insect pest of tea. Phytoparasitica 40, 433–444.Google Scholar
  187. Saha D., Mukhopadhyay A. and Bahadur M. (2012e) Variation in the activity of three principal detoxifying enzymes in major sucking pest of tea, Helopeltis theivora Waterhouse (Heteroptera: Miridae) from subHimalayan tea plantations of West Bengal, India. Proceedings of Zoological Society, doi: 10.1007/s12,595-012-0039-y.Google Scholar
  188. Sannigrahi S. and Mukhopadhyay A. (1992) Laboratory evaluation of predatory efficiency of Geocoris ochropterus Fieber (Hemiptera: Lygaeidae) on some common tea pests. Sri Lanka Journal of Tea Science 61, 39–44.Google Scholar
  189. Sannigrahi S. and Talukdar T. (2003) Pesticide use patterns in Dooars tea industry. Two and a Bud 50, 35–38.Google Scholar
  190. Sarker M. and Mukhopadhyay A. (2003) Expression of esterases in different tissues of the tea pest, Helopeltis theivora exposed and unexposed to synthetic pesticide sprays from Darjeeling foothills and plains. Two and a Bud 50, 28–30.Google Scholar
  191. Sarker M. and Mukhopadhyay A. (2006a) Studies on salivary and midgut enzymes of a major sucking pest of tea, Helopeltis theivora (Heteroptera: Miridae) from Darjeeling plains, India. Journal of the Entomological Research Society 8, 27–36.Google Scholar
  192. Sarker M. and Mukhopadhyay A. (2006b) Studies on some enzymes related to insecticide resistance in Helopeltis theivora Waterhouse (Insecta: Heteroptera: Miridae) from Darjeeling foothills and plains. Journal of Plantation Crops 34, 423–428.Google Scholar
  193. Sarmah M., Rahman A., Phukan A. K. and Gurusubramanian G. (2006) Bioefficacy of insecticides in combination with acaricides and nutrients against Helopeltis theivora Waterhouse in tea. Pesticide Research Journal 18, 141–145.Google Scholar
  194. Scharf M. E., Neal J. J. and Bennett W. G. (1998) Changes of insecticide resistance levels and detoxication enzymes, following insecticide selection in the German cockroach, Blattella germanica (L.). Pesticide Biochemistry and Physiology 59, 67–79.Google Scholar
  195. Schumacher F. (1915) Der gegenwartige stand unserer kenntnis von der Homopteren — Fauna der Insel Formosa. Mitteilungen aus den Zoologischen Museum in Berlin 8, 73–34.Google Scholar
  196. Scott J. G. (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls, pp. 39–57. In Pesticide Resistance in Arthropods (edited by R. T. Roush and B. E. Tabashnik). Chapman and Hall, New York.Google Scholar
  197. Scott J. G. (1991) Insecticide resistance in insects, pp. 663–677. In Handbook of Pest Management (edited by D. Pimental). CRC Press, Boca Raton.Google Scholar
  198. Seal D. R., Ciomperlik M., Richards M. L. and Klassen W. (2006) Comparative effectiveness of chemical insecticides against the chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), on pepper and their compatibility with natural enemies. Crop Protection 25, 949–955.Google Scholar
  199. Seal D. R., Klassen W. and Sabines C. (2007) Management of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae): effectiveness of neonicotinoids and spinosyns and ineffectiveness of pyrethroids. Proceedings of the Caribbean Food Crops Society 43, 39–48.Google Scholar
  200. Seal D. R., Klassen W. and Kumar V. (2010) Biological parameters of Scirtothrips dorsalis Hood, on selected hosts. Environmental Entomology 39, 1389–1398.PubMedPubMedCentralGoogle Scholar
  201. Shi C. H., Shang J. N. and Chen Y. F. (2001) Dynamic residues of imidacloprid in tea products and its application to control of tea insect pests, pp. 165–166. In Integrated Pest Management in Relation to Safe Agricultural Products (edited by Y. J. Yu and Q. H. Zhang). China Agriculture Press, Beijing.Google Scholar
  202. Shiraki T. (1920) Insect pests of the tea plant in Formosa, In Report of the Proceedings of the Third Entomological Meeting. 3–15 February 1919, Pusa (edited by T. Bainbrigge Fletcher). Superintendent of Government Printing, Calcutta pp. 629–630.Google Scholar
  203. Siegfried B. D. and Ono M. (1993) Mechanisms of parathion resistance in the greenbug, Schizaphis graminum (Rondani). Pesticide Biochemistry and Physiology 45, 24–33.Google Scholar
  204. Simanjuntak H. (2002) Natural Enemy of Tea Pests. Ministry of Agriculture Publisher, Indonesia.Google Scholar
  205. Sivapalan P. (1999) Pest management in tea, pp. 625–646. In Global Advances in Tea Science (edited by N. K. Jain). Aravali Books, New Delhi.Google Scholar
  206. Smee C. (1937) Report of the Entomologist, Report of the Department of Agriculture Nyasaland for 1936. pp. 20–24.Google Scholar
  207. Smissaert H. R. (1964) Cholinesterase inhibition in spider mite susceptible and resistant to organophosphate. Science 143, 129–131.PubMedPubMedCentralGoogle Scholar
  208. Smith E. S. C., Thistleton B. M. and Pippet J. R. (1985) Assessment of damage and control of Helopeltis clavifer (Heteroptera: Miridae) on tea in Papua New Guinea. Papua New Guinea Journal of Agriculture, Forestry and Fisheries 33, 123–131.Google Scholar
  209. Soderland D. M. and Bloomquist J. R. (1990) Molecular mechanisms of insecticide resistance, pp. 58–96. In Pesticide Resistance in Arthropods (edited by R. T. Roush and B. E. Tabashnik). Chapman and Hall, New York.Google Scholar
  210. Sonan J. (1923) Insect pests of the tea plant in Formosa. Taiwan-nojiho, pp. 41–51 (in Japanese).Google Scholar
  211. Sonan J. (1924) Insect pests of the tea plant in Formosa Part I. Department of Agriculture Research Institute Report, Vol. 12. pp. 1–132 (in Japanese).Google Scholar
  212. Sonan J. (1933) List of insect pests of the tea plant in Japan. Insect World 37, 257-263-265-270.Google Scholar
  213. Sparks T. C., Lockwood J. A., Byford R. L., Graves J. B. and Leonard B. R. (1989) The role of behavior in insecticide resistance. Journal of Pesticide Science 26, 383–399.Google Scholar
  214. Sweeney R. C. H. (1965) The mosquito bugs of Malawi (Helopeltis spp.). The Farmer and Forester 6, 11–19.Google Scholar
  215. Szent-Ivany J. J. H. (1958) Insects of cultivated plants in the Central Highlands of New Guinea, pp. 427–437. In Proceedings of the 10th International Congress of Entomology, Montreal, 17–25 August 1956 (edited by E. C. Becker). Mortimer, Ottawa.Google Scholar
  216. Takahashi R. (1935) Economic aspects of the Formosan thrips. Journal of the Society of Tropical Agriculture 7, 67–78 (in Japanese).Google Scholar
  217. Tao T., Hu K. M., She Y. P., Zhu Q. Z. and Luo Z. (1996) Studies on the integrated management techniques of smaller green leafhopper in tea plantation of south Yunnan. Acta Phytophysiologica Sinica 23, 310–314.Google Scholar
  218. Terriere L. C. (1984) Induction of detoxification enzymes in insects. Annual Review of Entomology 29, 71–88.PubMedPubMedCentralGoogle Scholar
  219. Tripathi R. K. and O’Brien R. (1973) Insensitivity of acetylcholinesterase as a factor in resistance of houseflies to the organophosphate Rabon. Pesticide Biochemistry and Physiology 3, 49, 5498.Google Scholar
  220. Tulashvili N. (1930) Beobachtungen fiber die Schadlinge des Teestrauches und der Citrusgewachse (Citronen, Apfelsinen) am Strangebiet Batum im Laufe von 1927–1928. Mitt. PflSchAbt. Volkskom. Landw. S.S.R. Georg. (No.1), pp. 189–230.Google Scholar
  221. Van de Baan H. E. and Croft B. A. (1991) Resistance to insecticides in winter- and summer-forms of pear psylla, Psylla pyricola. Pesticide Science 32, 225–233.Google Scholar
  222. Vanisree K., Upendhar S. and Rajasekhar P. (2011) Toxicity of certain novel insecticides against chilli thrips, Scirtothrips Dorsalis (Hood). Resistant Pest Management Newsletter 21, 17–21.Google Scholar
  223. Varatharajan R., Devi K. D. and Singh H. C. (2007) Thrips fauna from the tea fields of Southern and Northeastern India. Journal of Plantation Crops 35, 128–129.Google Scholar
  224. Vassiliou V., Emmanouilidou M., Perrakis A., Morou E., Vontas J., Tsagkarakou A. and Roditakis E. (2011) Insecticide resistance in Bemisia tabaci from Cyprus. Insect Science 18, 30–39.Google Scholar
  225. Vinson S. B. and Law P. K. (1971) Cuticular composition and DDT resistance in the tobacco budworm. Journal of Economic Entomology 64, 1387–1390.PubMedPubMedCentralGoogle Scholar
  226. Voss G. (1980) Cholinesterase auto analysis: a rapid method for biochemical studies on susceptible and resistant insects. Journal of Economic Entomology 73, 189–192.Google Scholar
  227. Wadleigh R. W. and Yu S. J. (1987) Glutathione transferase activity of fall armyworm larvae toward α, β-unsaturated carbonyl allelochemicals and its induction by allelochemicals. Insect Biochemistry 17, 759–764.Google Scholar
  228. Wadleigh R. W. and Yu S. J. (1988) Detoxification of isocyanate allelochemicals by glutathione transferase in three lepidopterous species. Journal of Chemical Ecology 14, 1279–1288.Google Scholar
  229. Whittaker R. H. and Feeny P. P. (1971) Allelochemics: chemical interactions between species. Science 171, 757–770.Google Scholar
  230. Widayat W. and Winasa I. W. (2006) Bioecology of Empoasca flavescens and its natural enemy. Journal of Research of Kina and Tea 9, 12–19 (in Indonesian).Google Scholar
  231. Willinger G. and Dobler S. (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochemical Systematics and Ecology 29, 335–346.PubMedPubMedCentralGoogle Scholar
  232. Wink M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3–19.PubMedPubMedCentralGoogle Scholar
  233. Wink M. and Waterman P. (1999) Chemotaxonomy in relation to molecular phylogeny of plants. Annual Plant Reviews 2, 300–341.Google Scholar
  234. Wu S., Yang Y., Yuan G., Campbell P. M., Teese M. G., Russell R. J., Oakeshott J. G. and Wu Y. (2011) Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology 41, 14–21.PubMedPubMedCentralGoogle Scholar
  235. Xie D. X. (1992) Investigation on the control of the tea yellow mite with buprofezin. Tea Science and Technology 4, 32–34.Google Scholar
  236. Xie Z. L. (1993) Investigation on the structure sequence of insect populations in the tea gardens of Guandong Province (China). Tea in Guandon 1, 2–10 (in Chinese).Google Scholar
  237. Yang X., Margolies D. C., Zhu K. Y. and Buschman L. L. (2001) Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the two spotted spider mite (Acari: Tetranichidae). Journal of Economic Entomology 94, 381–387.PubMedPubMedCentralGoogle Scholar
  238. Yang Y., Wu Y., Chen S., Devine G. J., Denholm I., Jewess P. and Moores G. D. (2004) The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochemistry and Molecular Biology 34, 763–773.PubMedPubMedCentralGoogle Scholar
  239. Yu S. J. (1983) Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworm. Pesticide Biochemistry and Physiology 19, 330–336.Google Scholar
  240. Yu S. J. (1986) Host plant induction of microsomal monooxygenases in relation to organophosphate activation in fall armyworm larvae. Florida Entomologist 69, 579–587.Google Scholar
  241. Yu S. J. (1989) Purification and characterization of glutathione transferases from five phytophagous Lepidoptera. Pesticide Biochemistry and Physiology 35, 97–105.Google Scholar
  242. Yu S. J. (2008) The Toxicology and Biochemistry of Insecticides. CRC Press, Florida. 296 pp.Google Scholar
  243. Yu S. J., Nguyen S. N. and Abo-Elghar G. E. (2003) Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology 77, 1–11.Google Scholar
  244. Yunus A. and Ho T.H. (1980) List of economic pests, host plants, parasites and predators in West Malaysia (1920–1978). Bulletin of the Malaysian Department of Agriculture No. 153. 538 pp.Google Scholar
  245. Zee F., Sato D., Keith L., Follett P. and Hamasaki R.T. (2000) Small-scale tea growing and processing in Hawaii. In New Plants for Hawaii NPH-9. Cooperative Extension Service, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hawaii. 14 pp.Google Scholar
  246. Zeiss M. R. and Braber K. D. (2001) Tea: Integrated Pest Management Ecological Guide. E-book. CIDSE, Vietnam.Google Scholar
  247. Zeng R. S., Zhimou W., Goudong N., Schular M. A. and Berenbaum M. R. (2007a) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. Journal of Chemical Ecology 33, 449–461.PubMedPubMedCentralGoogle Scholar
  248. Zeng Z., Zhou Z., Wei Z., Chen S. and You M. (2007b) Toxicity of five insecticides on predatory mite (Anystis baccarum L.) and their effects on predation to tea leafhopper (Empoasca vitis Gothe). Journal of Tea Science 27, 147–152.Google Scholar
  249. Zhang H. and Han B. Y. (1999) The analysis on the fauna of tea insect pests in China and their regional occurrence. Journal of Tea Science 19, 81–86.Google Scholar
  250. Zhao D. X., Chen Z. M. and Cheng J. A. (2000) Belongingness of tea leafhopper dominant species. Journal of Tea Science 20, 101–104.Google Scholar
  251. Zhu K. Y. and Gao J. R. (1999) Increased activity associated with reduced sensitivity of acetylcholinesterase in organophosphate resistant greenbug, Schizaphis graminum (Homoptera: Aphididae). Pesticide Science 55, 11–17.Google Scholar
  252. Zhu J. G., Kuang R. P., Hu H. M., Tao T. and Zhu Q. Z. (1993) The development, reproduction and spatial distribution of lesser green leafhopper (Empoasca flavescens) on different tea cultivars. Zoological Research 14, 241–245.Google Scholar
  253. Zhu Y. C., Snodgrass G. L. and Ming Shun Chen M. S. (2001) Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochemistry and Molecular Biology 34, 1175–1186.Google Scholar
  254. Zhu Y. C., West S., Snodgrass G. and Luttrell R. (2011) Variability in resistance-related enzyme activities in field populations of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology 99, 265–273.Google Scholar

Copyright information

© ICIPE 2013

Authors and Affiliations

  1. 1.Entomology Research Unit, Department of ZoologyUniversity of North Bengal, Raja Rammohunpur, Post Office North Bengal UniversitySiliguriIndia

Personalised recommendations