Advertisement

Effects of sublethal concentrations of diflubenzuron and methoprene on Aedes aegypti (Diptera: Culicidae) fitness

  • Juliana Junqueira da Silva
  • Julio Mendes
  • Cecília LomônacoEmail author
Research Paper

Abstract

The effects of sublethal concentrations of the insect growth regulators (IGRs) diflubenzuron and methoprene on some fitness components of an Aedes aegypti (L.) population in south-eastern Brazil were investigated. The fourth instar larvae of the mosquito were exposed to 20ppb methoprene and 3ppb diflubenzuron, and adult survivors were evaluated for fitness parameters, including body size and biomass, fecundity, fertility, longevity and symmetry. The sublethal concentrations had negative effects on longevity, but biomass, fecundity and fertility were not affected by either IGR. In separate experiments, A. aegypti individuals’ surviving concentrations of 2, 3 and 3.5 ppb diflubenzuron and 5, 10 and 20ppb methoprene were used for morphological analyses (size and symmetry). Diflubenzuron had negative effects on the mosquito’s body symmetry. The observed decreases in longevity and symmetry may have negative impacts on the population dynamics of A. aegypti.

Key words

Aedes aegypti diflubenzuron methoprene insect growth regulator fluctuating asymmetry south-eastern Brazil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antipin M. I. and Imasheva A. G. (2001) Genetic variability and fluctuating asymmetry of morpho-logical traits in Drosophila melanogaster reared on a pesticide-containing medium. Russian Journal of Genetics 37, 247–252.CrossRefGoogle Scholar
  2. Armbruster P. and Hutchinson R. A. (2002) Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology 34, 699–704.CrossRefGoogle Scholar
  3. Babbit G. A., Kiltie R. and Bolker B. (2006) Are fluctuating asymmetry studies adequately sampled implications of a new model for size distribution? American Naturalist 167, 230–245.CrossRefGoogle Scholar
  4. Bedhomme S., Agnew P., Sidobre C. and Michalakis Y. (2003) Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. Journal of Evolutionary Biology 16, 721–730.CrossRefGoogle Scholar
  5. Bjorksten T. A., Fowler K. and Pomiankowski A. (2000) What does sexual trait FA tell us about stress? Trends in Ecology Evolution 15, 163–166.CrossRefGoogle Scholar
  6. Braga I. A., Mello C. B., Peixoto A. A. and Valle D. (2005) Evaluation of methoprene effect on Aedes aegypti (Diptera: Culicidae) development in laboratory conditions. Memórias do Instituto Oswaldo Cruz 100, 435–440.CrossRefGoogle Scholar
  7. Carvalho M. S. L., Caldas E. D., Degallier N., Vilarinhos P. T. R., Souza L. C. K. R., Yoshizawa M. A. C., Knox M. B. and Oliveira C. (2004) Susceptibility of Aedes aegypti larvae to the insecticide temephos in the Federal District, Brazil. Revista de Saúde Pública 38, 1–6.CrossRefGoogle Scholar
  8. Clarke G. M. and Ridsdill-Smith T. J. (1990) The effect of avermectin B1 on developmental stability in the bush fly, Musca vetustissima, as measured by fluctuating asymmetry. Entomología Experimentalis et Applicata 54, 265–269.CrossRefGoogle Scholar
  9. Cunha M. P., Lima J. B. P., Brogdon W. G., Moya G. E. and Valle D. (2005) Monitoring of resistance to the pyrethroid cypermethrin in Brasilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Memórias do Instituto Oswaldo Cruz 100, 441–444.CrossRefGoogle Scholar
  10. Floate K. D. and Fox A. S. (2000) Flies under stress: a test of fluctuating asymmetry as a biomonitor of environ-mental quality. Ecological Applications 10, 1541–1550.CrossRefGoogle Scholar
  11. Fournet F., Sannier C. and Monteny N. (1993) Effects of two insect growth regulators OMS 2017 and diflu-benzuron on the reproductive potential of Aedes aegypti. Journal of the American Mosquito Control Association 9, 426–430.PubMedGoogle Scholar
  12. FUNASA (Ed.) (2001) Dengue: instruqoes para pessoal de combate ao vetor — manual de normas técnicas. Ministério da Saúde, Brasilia. 84 pp.Google Scholar
  13. Gelbic I., Olejnícek J. and Grubhoffer L. (2002) Effects of insect hormones on hemagglutination activity in two members of the Culex pipiens complex. Experimental Parasitology 100, 75–79.CrossRefGoogle Scholar
  14. Image J 1.35s, USA (2006) National Institutes of Health. Java 1.5.0_06. Available from: < https://doi.org/rsb.info.nih.gov/ij/ > (accessed 29 April 2008).Google Scholar
  15. Klingenberg C. P. and McIntyre G. S. (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52, 1363–1375.CrossRefGoogle Scholar
  16. Leary R. F. and Allendorf F. W. (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Tree Physiology 4, 214–216.Google Scholar
  17. Lomônaco C. and Germanos E. (2001) Variações fenotípicas em Musca domestica L. (Diptera: Muscidae) em resposta a competição larval por alimento. Neotropical Entomology 30, 223–231.CrossRefGoogle Scholar
  18. Macoris M. L. G., Andrighetti M. T. M., Takaku L., Glasser C. M., Garbeloto V. C. and Bracco J. E. (2003) Resistance of Aedes aegypti from state of Sao Paulo, Brazil to organophosphate insecticides. Memórias do Instituto Oswaldo Cruz 98, 703–708.CrossRefGoogle Scholar
  19. Manly B. F. J. (Ed.) (1994) Multivariate Statistical Methods. Chapman & Hall, London. 215 pp.Google Scholar
  20. Mpho M., Holloway G. J. and Callaghan A. (2001) A comparison of the effects of organophosphate insecticide exposure and temperature stress on fluctuating asymmetry and life history traits in Culex quinquefasciatus. Chemosphere 45, 713–720.CrossRefGoogle Scholar
  21. Mulla M. S. (1995) The future of insect growth regulators in vector control. Journal of the American Mosquito Control Association 11, 269–273.PubMedGoogle Scholar
  22. O’Donnel P. P. and Klowden M. J. (1997) Methoprene affects the rotation of the male terminalia of Aedes aegypti mosquitoes. Journal of the American Mosquito Control Association 13, 1–4.Google Scholar
  23. Palmer R. A. and Strobeck C. (1986) Fluctuating asymmetry: measurement analysis, patterns. Annual Review of Ecology and Systematics 17, 391–421.CrossRefGoogle Scholar
  24. Perfectti F. and Camacho J. P. (1999) Analysis of genotypic differences in developmental stability in Annona cherimola. Evolution: International Journal of Organic Evolution 53, 1396–1405.CrossRefGoogle Scholar
  25. Reyes-Villanueva F., Juárez-Eguia M. and Flores-Leal A. (1990) Effects of sublethal dosages of Abate® upon adult fecundity and longevity of Aedes aegypti. Journal of the American Mosquito Control Association 6, 739–741.PubMedGoogle Scholar
  26. Robert L. L. and Olson J. K. (1989) Effects of sublethal dosages of insecticides on Culex quinquefasciatus. Journal of the American Mosquito Control Association 5, 239–246.PubMedGoogle Scholar
  27. Rodriguez M. M., Bisset J., Ruiz M. and Soca A. (2002) Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. Journal of Medical Entomology 39, 882–888.CrossRefGoogle Scholar
  28. Sawbi R., Klowden M. J. and Sjogren R. D. (1992) Sublethal effects of larval methoprene exposure on adult mosquito longevity. Journal of the American Mosquito Control Association 8, 290–292.Google Scholar
  29. Silva J. J. and Mendes J. (2007) Susceptibility of Aedes aegypti (L.) to the insect growth regulators difluben-zuron and methoprene in Uberlândia, State of Minas Gerais. Revista da Sociedade Brasileira de Medicina Tropical 40, 612–616.CrossRefGoogle Scholar
  30. Silva J. J., Mendes J. and Lomônaco C. (2004) Developmental stress by diflubenzuron in Haematobia irritans (L.) (Diptera: Muscidae). Neotropical Entomology 33, 249–253.CrossRefGoogle Scholar
  31. Systat (2002) Systat® for Windows® version 10.2. [S.l.]: © Systat Software.Google Scholar
  32. Tripleton C. A. and Johnson N. F. (Eds) (2005) Borror and DeLong’s Introduction to the Study of Insects. Thomson, Belmont, CA. 864 pp.Google Scholar
  33. Ueno H. (1994) Fluctuating asymmetry in relation to two fitness components, adult longevity and male mating success in a ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Journal of Economic Entomology 19, 87–88.CrossRefGoogle Scholar
  34. Vasuki V. (1999) Influence of IGR treatment on oviposition of three species of vector mosquitoes at sublethal concentrations. Southeast Asian Journal of Tropical Medicine and Public Health 30, 200–203.PubMedGoogle Scholar
  35. Wirth M. C. and Georghiou G. R (1999) Selection and characterization of temephos resistance in a population of Aedes aegypti from Tortola, British Virgin Islands. Journal of the American Mosquito Control Association 15, 315–320.PubMedGoogle Scholar
  36. Woods R. E., Hercus M. J. and Hoffmann A. A. (1998) Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution: International Journal of Organic Evolution 52, 816–824.CrossRefGoogle Scholar
  37. Zar J. H. (Ed.) (1984) Biostatistical Analysis. Prentice Hall, New Jersey. 718 pp.Google Scholar

Copyright information

© ICIPE 2009

Authors and Affiliations

  • Juliana Junqueira da Silva
    • 1
  • Julio Mendes
    • 1
  • Cecília Lomônaco
    • 2
    Email author
  1. 1.Instituto de Ciências BiomédicasPrograma de Pós-Graduação em Imunologia e Parasitologia AplicadasUberlândiaBrazil
  2. 2.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil

Personalised recommendations