Advertisement

International Journal of Tropical Insect Science

, Volume 10, Issue 5, pp 591–599 | Cite as

Evidence of Heredity in Oviposition Capability of Ticks

  • Olusegun O. Dipeolu
Research Article

Abstract

Populations of Rhipicephalus sanguineus, Dermacentor variabilis and Amblyomma maculatum with high and low oviposition capacities were successfully bred in the laboratory. Mating of male and female ticks which possess high oviposition capacity produced female progenies with high oviposition capacity; male and female ticks which possess low oviposition capacity produced female progenies which possess low oviposition capacity. Crossmatings of males with females of opposite oviposition capacity produced female progenies which acquired the category of oviposition capacity of the males in predominant numbers after fourth and Fifth generations. It is suggested that the genetic factor for high or low oviposition capacity is either possessed by male ticks alone or is stronger and dominant in the male over that of the female. This genetic factor is also potentiated by successive crossmatings of males and females possessing opposite oviposition capacities.

The possible application of these results to tick control through the suppression of natural population by field release of laboratory-bred populations of male ticks which possess low oviposition capacity is discussed.

Résumé

Des populations de Rhipicephalus sanguineus, Dermacentor variabilis et Amblyomma variegatum caractérisées par des pontes soit faibles soit fortes ont pu étre élévees en laboratoire. Le croisement de mâles et femelles à fortes ponte engendre une descendance femelle à fortes pontes tandis que le croisement d’individus à faibles pontes résulte en femelles peu productrices. La combinaison des deux traits opposés produit des femelles qui, après quatre ou cinq générations, héritent les caractéristiques de la population de mâles. Ceci suggère donc que le facteur génétique responsable de la taille des pontes se trouve, ou est dominant, chez le mâle, ou est en tout cas plus fort que celui de la femelle. Il ne s’exprime en outre qu’après le croisement répété de femelles et mâles de caractères opposés.

L’application pratique de ces résultats—suppression de populations naturelles par lâcher de mâles à facteur de ponte faible—est discuée dans le cadre de la lutte antitiques.

Key Words

Ticks heredity oviposition capacity mating generations genetic factors Rhipicephalus sanguineus Dermacentor variabilis Amblyomma maculatum 

Mots Clefs

Tiques hérédité potentiel de ponte reproduction générations facteurs génétiques Rhipicephalus sanguineus Dermacentor variabilis Amblyomma maculatum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey K.P. (1960) Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bull. Epizoot. Dis. Afr. 8, 33–43.Google Scholar
  2. Balashov Y.S. (1972) Blood sucking ticks (Ixodidae) vectors of disease of man and animals. Misc. Publ. Entomol. Soc. Am. 8, 161–376.Google Scholar
  3. Bram R.A. (1975) Tick-borne livestock diseases and their vector. I. The global problem. World Anim. Rev. 16, 1–5.Google Scholar
  4. Brassard M. (1976) Relations immunologiques entre bovins et tiques, plus particulierement entre bovins et Boophilus microplus. Acta Trop. 33, 15–36.Google Scholar
  5. Durand M.R.E. (1976) Ticks—a warning. Queensl. Agric. J. (Nov-Dec.) pp. 541–544.Google Scholar
  6. Davey R.B. (1986) Mating competitiveness of hybrid Boophilus male ticks compared to pure-strain B. microplus males (Acari:Ixodidae). J. Med. Entomol. 23, 433–436.CrossRefGoogle Scholar
  7. Davey R.B., Osburn R.L. and Castillo C. (1983) Longevity and mating behaviour in males and parthenogenesis in females in hybridized Boophilus ticks (Acari:Ixodidae). J. Med Entomol. 20, 614–617.CrossRefGoogle Scholar
  8. Diehl P.A., Aeschlimann A. and Obenchain F.D. (1982) Tick reproduction: Oogenesis and oviposition. In Physiology of Ticks (Edited by Obenchain F.D. and Galun R.), pp. 277–350. Pergamon Press, U.K.CrossRefGoogle Scholar
  9. Dipeolu O.O. and Haruna A. (1984) Studies on ticks of veterinary importance in Nigeria. XVII. Resistance of rabbits to infestation with Amblyomma variegatum and Boophilus decolorants (Acari:Ixodidae). Folia Parasitol. 31, 357–364.PubMedGoogle Scholar
  10. Dipeolu O.O., Amoo A.O. and Akinboade O.A. (1989) Studies on ticks of veterinary importance in Nigeria: Intrinsic factors influencing oviposition and egg-hatch of Amblyomma variegatum under natural conditions. Folia Parasitol. 35 (in press).Google Scholar
  11. Dipeolu O.O. (1989) Studies on ticks of Alabama: Oviposition, egg sizes and shapes and embryonic development of Dermacentor variabilis, Rhipicephalus sanguineus and Amblyomma maculatum. Exp. Appl. Acarol. 5 (in press).Google Scholar
  12. Ernst S.E. and Gladney W.J. (1974) Dermacentor albipictus: Hybridization of the two forms of the winter tick. Ann. Entomol. Soc. Am. 68, 63–67.CrossRefGoogle Scholar
  13. George J.E., Osburn R.L. and Wikel S.K. (1985) Acquisition and expression of resistance by Bos indicus and Bos indicus x Bos taurus calves to Amblyomma americanum infestation. J. Parasitol. 71, 174–182.CrossRefGoogle Scholar
  14. Gladney W. J. and Dawkins C.D. (1973) Experimental interspecific mating of Amblyomma maculatum and A. americanum. Ann. Entomol. Soc. Am. 66, 1036–1039.CrossRefGoogle Scholar
  15. Graham O.H., Price M.A. and Trevino J.L. (1972) Crossmating experiments with Boophilus annulatus and B. microplus (Acarina:Ixodidae). J. Med. Entomol. 9, 531–537.CrossRefGoogle Scholar
  16. Hewetson R.W. (1971) Resistance by cattle to cattle tick, Boophilus microplus III. Development of resistance to experimental infestation by purebred Sahiwal and Shorthorn cattle. Aust. J. Agric. Res. 22, 331–342.CrossRefGoogle Scholar
  17. Knipling E.F., Laven H., Craig G.B., Pal R., Kitzmiller J.B., Smith C.N. and Brown A.W.A. (1968) Genetic control of insects of public health importance. Bull. W. H. O. 38, 421–438.PubMedGoogle Scholar
  18. Mongi A.O., Shapiro S.Z., Doyle J.J. and Cunningham M.P. (1986a) Immunization of rabbits with Rhipicephalus appendicular antigen-antibody complexes. Insect Sci. Applic. 7, 479–487.Google Scholar
  19. Mongi A.O., Shapiro S.Z., Doyle J.J. and Cunningham M.P. (1986b) Characterization of antigens from extracts of fed ticks using sera from rabbits immunized with extracted tick antigen and by successive tick infestation. Insect Sci. Applic. 7, 479–487.Google Scholar
  20. Osburn R.L. and Knipling E.F. (1982) The potential use of sterile hybrid Boophilus ticks (Acari: Ixodidae) as a supplemental eradication technique. J. Med. Entomol. 19, 637–644.CrossRefGoogle Scholar
  21. Solomon K.R. (1983) Acaricide resistance in ticks. Adv. Vet. Sci. Compedium Media. 27, 273–296.Google Scholar
  22. Steelman C.D. (1976) Effects of external and internal arthropod parasites on domestic livestock production. Annu. Rev. Entomol. 21, 155–178.CrossRefGoogle Scholar
  23. Thompson G.D., Davey R.B., Osburn R.L. and Cruz D. (1980) Longevity and fertilization capacity of males and parthenogenesis in females of Boophilus annulatus and B. microplus. J. Econ. Entomol. 73, 378–380.CrossRefGoogle Scholar
  24. Thompson G.D., Osburn R.L., Davey R.B., Drummond R.D. and Price M.A. (1981a) Hybrid sterility in cattle ticks (Acari:Ixodidae). Experientia 37, 127–128.CrossRefGoogle Scholar
  25. Thompson G.D., Osburn R.L., Davey R.B. and Price M.A. (1981b) The dynamics of hybrid sterility between Boophilus annulatus and B. microplus (Acari:Ixodidae) through successive generations. J. Med. Entomol. 18, 413–418.CrossRefGoogle Scholar
  26. Utech K.B.W., Seifert G.W. and Wharton R.H. (1978) Breeding Australian Illawara Shorthorn cattle for resistance to Boophilus microplus I. Factors affecting resistance. Aust. J. Agric. Res. 29, 411–422.CrossRefGoogle Scholar
  27. Weidheis D.E., Haile D.G., George J.E., Osburn R.L. and Drummond R. (1983) A basic model for use in computer simulations of Boophilus tick biology and control. USDA, ARS. Advance Agricultural Technology. AAI-S-32.Google Scholar
  28. Wharton R.H. (1976) Tick-borne livestock diseases and their vectors. 5. Acaricide resistance and alternate method of tick control. World Anim. Rev. 20, 8–15.Google Scholar
  29. Wharton R.H. and Roulston W.J. (1970) Resistance of ticks to chemicals. Annu. Rev. Entomol. 15, 381–404.CrossRefGoogle Scholar
  30. Whelen A.C., Richardson L.K. and Wikel S.K. (1984) Ixodid tick antigens recognized by the infested host: Immunoblotting studies. IRCS Med. Sci. 12, 910–911.Google Scholar
  31. Wikel S.K. and Osburn R.L. (1982) Immune responsiveness of the bovine host to repeated low-level infestations with Dermacentor andersoni. Ann. Trop. Med. Parasitol., 76, 405–414.CrossRefGoogle Scholar
  32. Wikel S.K. and Whelen A.C. (1986) Ixodid-host immune interaction. Identification and characterization of relevant antigens and tick-induced host immunosuppression. Vet. Parasitol. 20, 149–174.CrossRefGoogle Scholar
  33. Winston P.W. and Bates D.H. (1960) Saturated solutions for the control of humidity in biological research. Ecology 41, 232–237.CrossRefGoogle Scholar

Copyright information

© ICIPE 1989

Authors and Affiliations

  • Olusegun O. Dipeolu
    • 1
  1. 1.Parasitology Research Laboratory, Department of Pathology and ParasitologyTuskegee UniversityTuskegeeUSA

Personalised recommendations