Effects of Calyx Fluid from a Population of Cotesia Sesamiae (Cameron) (Hymenoptera: Braconidae) on the Immune Response of Its Host Busseola fusca Fuller (Lepidoptera: Noctuidae)

  • Moses B. Mochiah
  • Adele J. Ngi-SongEmail author
  • William A. Overholt
  • M. Botchey
Short Communication


Busseola fusca Fuller is one of the major lepidopteran stemborers of maize and sorghum in Africa. Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) is an indigenous, gregarious larval endoparasitoid that attacks mid- to late-instar stemborer larvae, which is reported to be one of the most important larval parasitoids of B. fusca in many countries in sub-Saharan Africa. Previous work has shown that two biotypes of C. sesamiae occur in Kenya which express differential abilities to develop in B. fusca. A biotype from western Kenya successfully develops in B. fusca, while a biotype from the eastern coastal area does not. We treated fourth-instars of B. fusca with calyx fluid from C. sesamiae from western Kenya (Kitale) before offering them to C. sesamiae from the Coast (Mombasa) for oviposition, and found that the eggs were not encapsulated. This suggests that factors in the calyx fluid of C. sesamiae from the western Kenya biotype were responsible for suppressing the immune system of B. fusca. We speculate that polydnaviruses in the calyx fluid were involved in disarming the host immune system, and that the polydnaviruses in the two biotypes are genetically different.

Key Words

polydnavirus Cotesia sesamiae Busseola fusca calyx fluid parasitisation encapsulation 


En Afrique, le lépidoptère Busseola fusca est l’un des foreurs les plus importants sur le maïs et le sorgho. Cotesia sesamiae (Cameron) (Hyménoptère: Braconidae) est un parasitoïde larvaire grégaire et interne qui attaque les larves des foreurs à partir du troisième stade. Il est considéré comme le parasitoïde indigène le plus important de B. fusca dans plusieurs pays d’Afrique subsaharienne. Des études antérieures ont montré qu’il existe au Kenya deux biotypes de C. sesamiae ayant différentes capacités de développement dans B. fusca. Le biotype originaire de l’Ouest du Kenya se développe avec succès dans B. fusca, tandis que le biotype originaire de l’Est, sur la côte du Kenya, n’arrive pas á se développer dans B. fusca. Nous avons traité les larves du quatrième stade de B. fusca avec le fluide du calyx de C. sesamiae originaire de l’Ouest du Kenya (Kitale) et les avons offertes à C. sesamiae de la côte (Mombasa) pour ponte, nous avons observé que les oeufs pondus n’étaient pas encapsulés. Ce qui suggère que des facteurs dans le fluide du calyx de C. sesamiae de l’Ouest du Kenya étaient responsables de la suppression du système immunitaire de B. fusca. Nous pensons que des virus presents dans le fluide du calyx sont impliqués dans la suppression du système immunitaire de l’hôte et que les virus des deux biotypes sont probablement différents génétiquement.

Mots Clés

polydnavirus Cotesia sesamiae Busseola fusca fluide du calyx parasitisation encapsulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonhof M. J., Overholt W.A., Van Huis A. and Polaszek A. (1997) Natural enemies of cereal stemborers in East Africa: A review. Insect Sci. Applic. 17, 19–35.Google Scholar
  2. Bosque-Perez N.A. and Mareck J.H. (1990) Distribution and composition of lepidopterous maize borers in southern Nigeria. Bull. Entomol. Res. 80, 363–368.CrossRefGoogle Scholar
  3. Bosque-Perez N.A. and Schulthess F. (1998) Maize: West and Central Africa, pp. 11–24. In African Cereal Stem Borers: Economic Importance, Taxonomy, Natural Enemies and Control. (Edited by A. Polaszek). CTA/CAB International.Google Scholar
  4. Davies D. H. and Vinson S. B. (1988) Interference with functions of plasmocytes of Heliothis virescens in vivo by calyx fluid of the parasitoids Campoletis sonorensis. Cell Tissue Res. 251, 467–475.CrossRefGoogle Scholar
  5. Davies D. H., Strand M. R. and Vinson S. B. (1987) Changes in differential haemocyte count and in vitro behaviour of plasmocytes from Heliothis virescens caused by Campoletis sonorensis polydnavirus. J. Insect Physiol. 33, 143–153.CrossRefGoogle Scholar
  6. De Buron I. and Beckage N. E. (1992) Characterisation of a polydnavirus (PDV) and virus-like filamentous particles (VLFP) in the braconid wasps Cotesia congregata (Hymenoptera: Braconidae). J. Invertebr. Pathol. 59, 315–327.CrossRefGoogle Scholar
  7. Edson K. M., Vinson S. B., Stoltz D. B. and Summers M. D. (1981) Virus in a parasitoid wasp: Suppression of the cellular immune response in the parasitoid’s host. Science 211, 582–583.CrossRefGoogle Scholar
  8. Fleming J. G. W. (1991) The Integration of polydnavirus genomes in parasitoid genomes: Implications for biological and genetic analysis of parasitoid wasp. Biological Control 1, 127–135.CrossRefGoogle Scholar
  9. Harris K. M. (1962) Lepidopterous stem borers of cereals in Nigeria. Bull. Entomol. Res. 53, 139–171.CrossRefGoogle Scholar
  10. Harris K. M. (1989) Bioecology of sorghum stemborers, pp. 63–71. In Workshop on Sorghum Stem Borers, 17–20 Nov. 1987, ICRISAT, Patancheru, India.Google Scholar
  11. Harris K. M. and Nwanze K. F. (1992) Busseola fusca (Fuller), the African maize stalk borer: A handbook of information. Information Bulletin 33, ICRISAT Patancheru, India and CABI, Oxon UK. 84 pp.Google Scholar
  12. Jepson W. F. (1954) A Critical Review of the World Literature of Lepidopterous Stalk Borers of Tropical Graminaceous Crops. Commonwealth Institute of Entomology. London, 127 pp.Google Scholar
  13. Kfir R. (1995) Parasitoids of the African stem borer, Busseola fusca (Lepidoptera: Noctuidae), in South Africa. African Entomology 2, 67–68.Google Scholar
  14. Kfir R. (1998) Maize and grain sorghum: Southern Africa pp. 29–38. In African Cereal Stem Borers: Economic Importance, Taxonomy, Natural Enemies and Control. (Edited by A. Polaszek) CTA/CAB International.Google Scholar
  15. Kfir R. (1995) Parasitoids of the African stem borer, Busseola fusca (Lepidoptera: Noctuidae), in South Africa. Bull. Entomol. Res. 85, 369–377.CrossRefGoogle Scholar
  16. Mohyuddin A. I. and Greathead D. J. (1970) An annotated list of parasites of graminaceous stem borers in East Africa, with a discussion of their potential in biological control. Entomophaga 15, 241–274.CrossRefGoogle Scholar
  17. Ngi-Song A. J., Overholt W. A. and Stouthamer R. (1998) Suitability of Busseola fusca and Sesamia calamistis (Lepidoptera: Noctuidae) for the development of two populations of Cotesia sesamiae (Hymenoptera: Braconidae) in Kenya. Biological Control 12, 208–214.CrossRefGoogle Scholar
  18. Nye I. W. B. (1960) The insect pests of graminaceous crops in East Africa. Colon. Res. Stud. No. 31, HMSO, London.Google Scholar
  19. Onyango F. O. and Ochieng-Odero J.P.R. (1994) Continuous rearing of the maize stemborer Busseola fusca on an artificial. Entomol. Exp. Appl. 73, 139–144.CrossRefGoogle Scholar
  20. Overholt W. A., Ochieng J. O., Lammers P. M. and Ogedah K. (1994) Rearing and field release methods for Cotesia flavipes Cameron (Hymenoptera: Braconidae), a parasitoid of tropical gramineous stemborers. Insect Sci. Applic. 15, 253–259.Google Scholar
  21. Polaszek A. and Walker A.K. (1991) The Cotesia flavipes species complex; parasitoids of cereals stem borers in the tropics. Redia 74, 335–341.Google Scholar
  22. Schulthess F., Bosque-Perez N.A., Chabi-Olaye A., Gounou S., Ndemah R. and Goergen G. (1997) Exchange of natural enemies of lepidopteran stemborers between African regions. Insect Sci. Applic. 17, 97–108.Google Scholar
  23. Stoltz D. B. (1990) Evidence for chromosomal transmission of polydnavirus DNA. J. Gen. Virol. 71, 1051–1056.CrossRefGoogle Scholar
  24. Stoltz D. B. (1993) The polydnavirus life cycle, pp. 167–187. In Parasites and Pathogens of Insects (Edited by N.E. Beckage, S. N. Thompson and B.A. Federici). Academic Press, New York.CrossRefGoogle Scholar
  25. Stoltz D. B., Krell P.J., Summers M.D. and Vinson S.B. (1984) Polydnaviridae—a proposed family of insect viruses with segmented, double-stranded, circular DNA genomes. Intervirology 21, 1–4.CrossRefGoogle Scholar
  26. Ullyett G.C. (1935) Notes on Apanteles sesamiae Cam. Parasites of the maize stalkborer Bussepla fusca (Fuller) in South Africa. Bull. Entomol. Res. 26, 253–262.CrossRefGoogle Scholar
  27. Vinson S. B. (1990) How parasitoids deal with the immune system of their host: An overview. Arch. Insect Biochem. Physiol. 13, 15–16.CrossRefGoogle Scholar
  28. Vinson S. B. (1993) Suppression of the insect immune system by parasitic Hymenoptera, pp. 171–187. In Insect Immunity (Edited by J. P. N. Pathak). Oxford and IBH Publishing Co. Pvt. Ltd., India.CrossRefGoogle Scholar
  29. Vinson S. B. and Scott J. R. (1975) Particles containing DNA associated with the oocyte of an insect parasitoid. J. Invertebr. Pathol. 25, 375–378.CrossRefGoogle Scholar
  30. Vinson S. B., Edson K. M. and Stoltz D. B. (1979) Effect of virus associated with reproductive system of the parasitoid wasp, Campoletis sonorensis, on host weight gain. J. Invertebr. Pathol. 34, 133–137.CrossRefGoogle Scholar
  31. Vinson S. B. and Stoltz D. B. (1986) Cross-protection experiments with two parasitoid (Hymenoptera: Ichneumonidae) viruses. Ann. Entomol. Soc. Am. 79, 216–218.CrossRefGoogle Scholar
  32. Walker A. K. (1994) Species of Microgastrinae (Hymenoptera: Braconidae) parasitizing lepidopterous ceral stem borers in Africa. Bull. Entomol. Res. 84, 421–434.CrossRefGoogle Scholar
  33. Whitefield J. B. (1993) Mutualistic viruses and the evolution of host ranges in endoparasitoid Hymenoptera, pp. 163–176. In Parasitoid Community Ecology (Edited by B.A. Hawkins and W. Sheehan). Oxford University Press, Oxford.Google Scholar

Copyright information

© ICIPE 2002

Authors and Affiliations

  • Moses B. Mochiah
    • 1
  • Adele J. Ngi-Song
    • 1
    Email author
  • William A. Overholt
    • 1
  • M. Botchey
    • 2
  1. 1.International Centre of Insect Physiology and EcologyNairobiKenya
  2. 2.Zoology DepartmentUniversity of Cape CoastCape CoastGhana

Personalised recommendations