A Simple Method for Artificial Infection of Tsetse, Glossina Morsitans Morsitans Larvae with the DNA Virus Of G. Pallidipes

  • Walter G. Z. O. Jura
  • Jan Zdarek
  • Leonard H. Otieno
Research Article


Newly deposited Glossina morsitans morsitans larvae were chilled over ice and inoculated with 1 μl of either virus suspension derived from Glossina pallidipes salivary gland homogenate or sterile tsetse physiological saline. They were allowed to pupariate and then maintained at 25°C, 70% r.h. until soon after emergence when their salivary glands were examined for enlargement and presence of virus particles. Teneral G. m. morsitans which received the virus inoculum (n = 135) as larvae all became infected as revealed by gross hypertrophy of their salivary glands and ultrastructural manifestation of virus particles within the glandular epithelial cells and lumina. In the control group, which received the tsetse physiological saline (n = 91), only 1.1% of the flies showed the salivary gland enlargement, a level equivalent to the prevalence of virus infection normally detectable in the G. morsitans colony. This technique opens the way for testing the biocontrol potential of this virus. The DNA virus from G. pallidipes is clearly infective to G. morsitans morsitans, suggesting that the hypertrophied, chalky-white salivary glands, reported in various Glossina spp., are a manifestation of infection by one and the same virus.

Key Words

Glossina morsitans morsitans Glossina pallidipes DNA virus larvae artificial infection 


Les larves de Glossina morsitans morsitans nouvelement déposées étaient refroidies sur la glace et inoculées avec 1 μl soit d’une suspension de virus provenant d’homogenat de glandes salivaires de Glossina pallidipes ou d’une solution physiologique sterile de tsétsé. Les larves se sont transformées en pupes puis maintenues à une temperature de 25°C et une humidité relative de 70% jusqu’à l’emergence lorsque leur glandes salivaires étaient examinées pour la présence des virus. Tous les 135 jeunes G. m. morsitans provenant des larves ayant été inoculées par des virus ont subit l’infection comme révélé par l’hypertrophie des glandes salivaires et la manifestation ultrastructurale des particules des virus au niveau des cellules épitheliales glandulaires et du lumen. Quant aux mouches tsétsé qui n’ont reçu que la solution physiologique (et utilisés comme contrôle), seulement 1, 1% de 91 jeune G. m. morsitans ont montré l’agrandissement des glandes salivaires, un niveau équivalent à l’incidence de l’infection du virus normalement rencontrée dans la colonie de G. morsitans. Le succès de cette technique ouvre une voie pour tester, l’utilisation de ce virus comme agent potentiel dans la lutte biologique. Le virus ADN provenant de G. pallidipes sans doute infecte G. m. morsitans. Ceci suggère que les glandes salivaires hypertrophiées observées chez différentes espèces de Glossines sont des manifestations d’infection causées par le même virus.

Mots Clés

Glossina morsitans morsitans Glossina pallidipes virus ADN larves infection artificielle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brenner S. and Home R. W. (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34, 103–110.CrossRefGoogle Scholar
  2. Burtt E. (1945) Hypertrophied salivary glands in Glossina: evidence that G. pallidipes with this abnormality is particularly suited to trypanosome infection. Ann. Trop. Med. Parasitai. 39, 11–13.CrossRefGoogle Scholar
  3. David W. A. L. (1975) The status of viruses pathogenic for insects and mites. Annu. Rev. Entomol. 20, 97–117.CrossRefGoogle Scholar
  4. Ellis D. S. and Maudlin I. (1987) Salivary gland hyperplasia in wild caught tsetse from Zimbabwe. Entomol. exp. appl. 45, 167–173.CrossRefGoogle Scholar
  5. Engelmann F. (1970) The Physiology of Insect Reproduction, Isted. Pergamon, Oxford.Google Scholar
  6. Gee J. D, (1976) Active transport of sodium by Malpighian tubules of the tsetse fly, Glossina morsitans. J. Exp. Biol. 64, 357–368.PubMedGoogle Scholar
  7. Glauert A.M. and Glauert R.H. (1958) Araldite as an embedding medium for electron microscopy. J. Biophys. Biochem. Cytol. 4, 191–194.CrossRefGoogle Scholar
  8. Gouteux J. P. (1987) Prevalence of enlarged salivary glands in Glossina palpalis, G. pallicera, and G. nigrofusca (Diptera: Glossinidae) from the Vavoua area, Ivory Coast. J. Med. Entomol. 24, 268.CrossRefGoogle Scholar
  9. Hagan H. R. (1951) Embryology of the Viviparous Insects. Ronald Press, New York.Google Scholar
  10. Hayat M. A. (1970) Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 1, 1st ed. Van Nostrand Reinhold, New York, Cincinnati, Toronto, London, Melbourne.Google Scholar
  11. Ignoffo C. and Hink W. F. (1971) Propagation of arthropod pathogens in living systems. In Microbial Control of Insects and Mites (Edited by Burgess H. D. and Hussey N. W.), pp. 541–580. Academic Press, New York.Google Scholar
  12. Jaenson T. G. T. (1978) Virus-like rods associated with sali vary gland hyperplasia in tsetse, Glossina pallidipes. Trans.R. Soc. Trop. Med. Hyg. 67, 234–238.CrossRefGoogle Scholar
  13. Jaenson T. G. T. (1986) Sex ratio distortion and reduced lifespan of Glossina pallidipes infected with the virus causing salivary gland hyperplasia. Entomol. exp. appl. 41, 265–271.CrossRefGoogle Scholar
  14. Jura W. G. Z. O. (1988) Morphological and functional changes associated with virus infection in male Glossina morsitans morsitans Westwood (Diptera: Glossinidae). In OAU/STRC, 1988, pp. 363–372.Google Scholar
  15. Jura W. G. Z. O., Odhiambo T. R., Otieno L. H. and Tabu N. O. (1988) Gonadal lesions in virus-infected male and female tsetse, Glossina pallidipes (Diptera: Glossinidae). J. Invertebr. Pathol. 52, 1–8.CrossRefGoogle Scholar
  16. Jura W. G. Z. O., Otieno L. H. and Chimtawi M. M. B. (1989) Ultrastructural evidence fortrans-ovum transmission of the DNA virus of tsetse, Glossina pallidipes (Diptera: Glossinidae). Curr. Microbiol. 18, 1–4.CrossRefGoogle Scholar
  17. Knipling E. F. (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J. econ. Entomol. 48, 459–462.CrossRefGoogle Scholar
  18. Nash T. A. M., Jordan A. M. and Trewern M. A. (1971) Mass rearing of tsetse flies (Glossina spp.): Recent advances. In Sterility Principle for Insect Control or Eradication (Edited by Self L. A.), pp. 99–110. Proceedings of the Symposium on the Sterility Principle for Insect Control or Eradication. IAEA, Vienna.Google Scholar
  19. Odindo M. O. (1988) Glossina pallidipes: Its potential for use in biological control of tsetse. Insect Sci. Applic. 9, 399–403.Google Scholar
  20. Odindo M. O., Sabwa D. M., Amutalla P. A. and Otieno W. A. (1981) Preliminary tests on the transmission of virus-like particles to the tsetse Glossinapallidipes. Insect Sci. Applic. 2, 219–221.Google Scholar
  21. Odindo M. O., Payne C. C., Crook N. E. and Jarrett P. (1986) Properties of a novel DNA virus from the tsetse fly, Glossinapallidipes. J. Gen. Virol. 67, 527–536.CrossRefGoogle Scholar
  22. Otieno L. H., Kokwaro E. D., Chimtawi M. and Onyango P. (1980) Prevalence of enlarged salivary glands in wild populations of Glossinapallidipes in Kenya, with a note on the ultrastructure of the affected organ. J. Invertebr. Pathol. 36, 113–118.CrossRefGoogle Scholar
  23. Pal R. and Whitten M. J. (1974) The Use of Genetics in Insect Control, 1st ed. Elsevier, North-Holland.Google Scholar
  24. Reynolds E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212.CrossRefGoogle Scholar
  25. Summers M. D. (1977) Baculoviruses. In Atlas of Insect and Plant Viruses (Edited by Maramorosch K.), pp. 3–28. Academic Press, New York.Google Scholar
  26. Watson M. L. (1958) Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4, 475–478.CrossRefGoogle Scholar
  27. Whitnall A. B. M. (1934) The trypanosome infections of Glossina pallidipes in the Umfolosi Game Reserve, Zululand. Onderst. J. Vet. Anim.Ind. 11, 7–21.Google Scholar
  28. Zdarek J. and Denlinger D. L. (1990) Wandering behaviour and pupariation in tsetse larvae. Physiol. Entomol. 16, 523–5).CrossRefGoogle Scholar

Copyright information

© ICIPE 1993

Authors and Affiliations

  • Walter G. Z. O. Jura
    • 1
  • Jan Zdarek
    • 2
  • Leonard H. Otieno
    • 1
  1. 1.The International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  2. 2.Institute of Organic Chemistry and BiochemistryCzechoslovakia Academy of SciencesPragueCzechoslovakia

Personalised recommendations