Advertisement

Rhipicephalus Appendiculatus Salivary Glands: Identification of Bioactive Molecules and Antigens

  • Moses K. H. Limo
  • David C. Seldin
  • Wolf P. Voigt
  • Onesmo K. Ole Moiyoi
Article

Abstract

Rhipicephalus appendiculatus salivary glands extracts and saliva contain both biochemically active and pharmacological agents with various effector functions, including inhibition of host enzymes or inactivation of other host molecules that may be important in mounting tick rejection. The majority of these salivary biochemicals may interact with host antibodies at the feeding site or in the gut (or both), that interfere with proper tick attachment and feeding. The possible role of these biochemicals in tick feeding is discussed. Of particular interest is a salivary anticoagulant, which increased as feeding phase progressed and was present in all life cycle stages of the tick. Antibodies raised in rabbits against salivary gland extracts obtained from female R. appendiculatus fed on rabbits for various days, recognized several antigens on Western blots of salivary gland extracts, but failed to react with the purified tick salivary anticoagulant molecule. Thus, tick anticoagulant was poorly immunogenic compared to other salivary moieties. These results may help to explain the strategies adopted by the tick to circumvent biochemical detachment by the damaging host-protective immune responses, thereby enabling the vector to co-exist with its mammalian hosts.

Key Words

Ticks Rhipicephalus appendiculatus salivary gland extracts saliva bioactive molecules anticoagulant immunoblotting antigens immunization 

Résumé

Les extraits de glandes salivaires et la salive de Rhipicephalus appendiculatus contiennent des substances biochimiques actives dont les diverses fonctions incluent entre autres l’inhibition des enzymes ou l’inactivation d’autres molécules de l’hôte; elles pourraient jouer un rôle important dans la rejection de la tique. La majorité de ces composés biochimiques pourraient réagir avec les anticorps de l’hôte au niveau de la prise de nourriture ou de l’estomac (ou les deux à la fois), et influencer la fixation de la tique sur l’hôte et la prise de nourriture. Le rôle possible de ces composés biochimiques au niveau de la tique est discuté. Un intérêt particulier est porté sur un anticoagulant contenu dans la salive et présent à tous les stades de développement du vecteur; le volume secrété de cet anticoagulant augmente au fur et à mesure que se poursuite le processus de prise de nourriture. Des anticorps produits à partir des lapins contre les extraits de glandes salivaires obtenus de la femelle de R. appendiculatus nourris plusiers jours sur de lapins, detectent plusiers antigéns grâce à la technique de “Western blot” utilisant des extraits de glandes salivaires, mais ne peuvant réagir avec la molécule purifiée de l’anticoagulant. Il a été déduit que l’anticoagulant contenu dans la salive de la tique est très peu immunogéne en comparaison avec d’autres molécules salivaires.

Ces résultats pourraient expliquer des stratégies adoptées par la tique pour empècher un détachment biochimique, par la destruction des réponses immunitaires de l’hôte, favorisant la coexistence du vecteur et de ses mamiféres hôtes.

Mots Clés

Tique Rhipicephalus appendiculatus extraits de glandes salivaires salive molécules bioactives anticoagulant immunoblotting antigénes immunisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen J. R. (1973) Tick resistance: basophils in skin reactions of resistant guinea pigs. Int. J. Parasitol. 3, 195–200.CrossRefGoogle Scholar
  2. Allen J. R. and Humpreys S. J. (1979) Immunization of guinea pigs and cattle against ticks. Nature 280, 491–193.CrossRefGoogle Scholar
  3. Askenase P. W., Bagnall B. G. and Worms M. J. (1982) Cutaneous basophil — associated resistance of ectoparasites (ticks). I. Transfer with immune serum or immune cells. Immunology 45, 501–511.PubMedPubMedCentralGoogle Scholar
  4. Brown S. J., Graxiano F. M. and Askenase P. W. (1982) Immune serum transfer of cutaneous basophil-associated resistance to ticks: Mediation by 7s IgG antibodies. J. Immunol. 129, 2407–2412.PubMedGoogle Scholar
  5. Brown S. J. and Askenase P. W. (1983) Immune rejection of ectoparasites (ticks) by T cell and IgG, antibody recruitment of basophils and eosinophils. Fed. Proc. 42, 1744–1749.PubMedGoogle Scholar
  6. Brown S. J., Shapiro S.Z. and Askenase P.W. (1984) Characterization of tick antigens inducing host immune resistance. I. Immunization of guinea pigs with Amblyomma americanum-derived salivary gland extracts and identification of an important salivary gland protein antigen with guinea pig anti-tick antibodies. J. Immunol. 133, 3319–3325.PubMedGoogle Scholar
  7. Burnette W.N. (1982) “Western blotting” Electrophoretic transfer of proteins from sodium dodecyl sulfate Polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203.CrossRefGoogle Scholar
  8. Buscher G. and Tangus B. (1986) Quantitative studies on Theileria parva in the salivary glands of Rhipicephalus appendiculatus adults: Quantitation and prediction of infection. International J. Parasitol. 93–100.Google Scholar
  9. Chinery W. A. and Aitey-Smith E. (1977) Histamine blocking agent of the tick Rhipicephalus sanguineus sanguineus. Nature (London) 265, 366–367.CrossRefGoogle Scholar
  10. Dickinson R. G., O’Hagan J. E., Schultz M., Binnington K. C. and Hegarty M. P. (1976) Prostaglandin in the saliva of the cattle tick Boophilus microplus. Australian J. Exp. Biol. Med. Sci. 54, 475, 486.CrossRefGoogle Scholar
  11. Fawcett D. S., Buscher G. and Doxsey S. (1982) Salivary gland of the tick vector of East Coast Fever. III. The ultrastructure and sporogony in Theileria parva. Tissue and Cell 14, 183–206.CrossRefGoogle Scholar
  12. Ferreira S. H. (1972) Prostagladins, aspirin-like drugs and analgesia. Nature (London) 240, 200–209.CrossRefGoogle Scholar
  13. Fivaz G. H., Noral R. A. I. and Lawrence J. A. (1989) Transmission of Theileria parva bovis (strain boleni) to cattle resistant to the brown ear tick Rhipicephalus appendiculatus (Neuman). Trop. Anim. Health Prod. 21, 2129–2134.CrossRefGoogle Scholar
  14. Gebrand F. B. S. and Wolf-Bernhad Schill (1972) Radial diffusion in gel for microdetermination of enzymes. II. Plasminogen activator, elastase and non-specific proteases. Anal. Biochem. 48, 9–21.CrossRefGoogle Scholar
  15. Geczy A. F., Naughton M. A., Clegy J. B. and Hewetson R. W. (1971) Esterases and carbohydrate-splitting enzyme in the saliva of the cattle tick Boophilus microplus. J. Parasitol. 57, 437–438.CrossRefGoogle Scholar
  16. Gill H. S. (1984) Tick feeding and the development of immunity to Hyalomma anatolicum anatolicum. Ph.D. Thesis. University of Edinburgh.Google Scholar
  17. Gill H. S., Boid R. and Ross C. A. (1986) Isolation and characterization of salivary antigens from Hyalomma anatolicum anatolicum. Parasite Immunol. 8, 11–25.CrossRefGoogle Scholar
  18. Gordon J. R. and Allen J. R. (1991) Factors V and VII anticoagulant activities in the salivary glands of feeding Dermacentor andersoniticks. J. parasitol. 167–170.Google Scholar
  19. Gwynne H. L., Starnes W. L. and Behall F. J. (1976) Human liver aminopeptidase. In Methods in Enzymology. Academic Press London. Vol. XLV, pp. 495–504.Google Scholar
  20. Hawkins R. I. and Hellman K. (1966) Factors affecting blood clotting from salivary glands and crop of Glossina austeni. Nature (London) 212, 738–739.CrossRefGoogle Scholar
  21. Hugli T. E. and Muller-Eberhard H. J. (1979) Anaphylatoxins: C3a and C5a. Adv. Immunol. 26, 1–48.Google Scholar
  22. Jackson L. A. and Opdebeck J. P. (1990) Humoral immune responses of Hereford cattle vaccinated with midgut antigens of the cattle tick, Boophilus microplus. Parasite Immunol. 12, 141–151.CrossRefGoogle Scholar
  23. Jordan S. P., Waxman L., Smith D. E. and Vlasuk G. P. (1990) Tick anticoagulant peptide: Kinetic analysis of the recombinant inhibitor with blood coagulation factor Xa. Biochemistry 29, 11095–11100.CrossRefGoogle Scholar
  24. Irvin A. D. and Brocklesby D. W. (1970) Rearing and maintaining Rhipicephalus appendiculatus in the laboratory. J. Inst. Anim. Technol. 21, 3–112.Google Scholar
  25. Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685CrossRefGoogle Scholar
  26. Limo M. K., Voigt W. P., Tumboh-Oeri A. G., Njogu R. M. and Onesmo ole Moiyoi K. (1991) Purification and characterization of an anticoagulant from the salivary glands of the ixodid tick Rhiphicepalus appendiculatus. Exp. Parasitol. 72, 418–429.CrossRefGoogle Scholar
  27. Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275PubMedGoogle Scholar
  28. Markwardt F. (1963) Blutgerinnungshemmende Wirkstoffe aus Blutsaugenden Tiernen. pp. 88–89. G. Fischer, Jena, West Germany.Google Scholar
  29. McGowan M. J., Barker P. W., Homer J. J., McNew R. W. and Holscher K. H. (1981) Success of tick feeding on calves immunized with Amblyomma americanum (Acari:Ixodidae) extract. J. Med. Entomol. 18, 328–332.CrossRefGoogle Scholar
  30. Mongi A. O., Shapiro S. Z., Doyle J. J., and Cunninghum M. P. (1986) Immunization of rabbits with Rhipicephalus appendiculatus antigen-antibody complexes. Insect Sci. Applic. 4, 471–477.Google Scholar
  31. Neeper M. P., Waxman L., Smith D. E., Schulam C. A., Sardana M., Ellis R. W., Schaffers L. W., Sieggl P. K. S. and Vlasuk G. P. (1990) Characterisation of recombinant tick anticoagulant peptide. The J. Biol. Chem. 265, 17746–17752.PubMedGoogle Scholar
  32. Nyindo M., Essuman S. and Dhadialla T.S. (1989) Immunisation against ticks: Use of salivary gland antigens and infestation with Rhiphicephalus appendiculatus (Acari:Ixodidae) in rabbits. J. Med. Entomol. 26, 430–434.CrossRefGoogle Scholar
  33. Obenchain F. D. and Galun R. (1982) Preface. In Physiology of Ticks (Edited by Obenchain F. D. and Galun R.), pp. vii–ix. Pergamon Press, Oxford UK.CrossRefGoogle Scholar
  34. Purnell R. E. and Joyner L. P. (1968) The development of Theileria parva in the salivary glands of the tick Rhipicephalus appendiculatus. Parasitology 58, 725–732.CrossRefGoogle Scholar
  35. Ribeiro J. M. C., Makoul G. T., Levine J., Robin D. R., and Speilman A. (1985) Antihemostatic, antiinflammatory and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med. 161, 332–334.CrossRefGoogle Scholar
  36. Ribeiro J. M. C. (1989) Role of saliva in tick/host interactions. Exp. Appl. Acarol. 7, 15–20.CrossRefGoogle Scholar
  37. Riek R. F. (1962) Studies on the reactions of animals to infestation with ticks. VI. Resistance of cattle to infestation with Boophilus microplus (Canestrini). Australian J. Agric. Res. 13, 532–550.CrossRefGoogle Scholar
  38. Roberts J. A. and Kerr J. D. (1976) Boophilus microplus: passive transfer of resistance in cattle. J. Parasitol. 62, 485–488.CrossRefGoogle Scholar
  39. Shapiro S. Z., Voigt W. P. and Ellis J. A. (1989) Acquired resistance to ixodid ticks induced by cement antigen. Exp. Appl. Acarol. 7, 33–41.CrossRefGoogle Scholar
  40. Steelman C. D. (1976) Effects of external and internal arthropod parasites on domestic livestock production. Annu. Rev. Entomol. 21, 155–178.CrossRefGoogle Scholar
  41. Tatchell R. J. (1967) A modified method for obtaining tick oral secretion. J. Parasitol. 53, 1106–1107.CrossRefGoogle Scholar
  42. Tatchell R. J. (1967) The significance of host-parasite relationship in the feeding of the cattle tick. Boophilus microplus. Proceedings of the 2nd Int. Cong. Acarol. pp. 341–343.Google Scholar
  43. Trager W. (1939) Acquired immunity to ticks. J. Parasitol. 25, 57–81.CrossRefGoogle Scholar
  44. Waxman L., Smith D. E., Arcuri K.E. and Vlasuk G. P. (1990) Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593–595.CrossRefGoogle Scholar
  45. Webster M. and Prado E.S. (1970) Glandular kallikreins from horse and human urine and from hog pancreas. In Methods of Enzymology (Edited by Permann G. E. and Lorand L.), Vol. 19, 681–699. Academic Press, Orlando, FL.CrossRefGoogle Scholar
  46. Wikel S. K. (1981) The induction of host resistance to tick infestation with a salivary gland antigen. Am. J. Trop. Med. Hyg. 30, 284–288.CrossRefGoogle Scholar
  47. Wikel S. K. (1982) Immunological basis of Host resistance to ticks. In Physiology of Ticks (Edited by Obenchain F. D. and Galun R.), pp. 169–196. Pergamon Press, Oxford, UK.CrossRefGoogle Scholar
  48. Willadsen P. (1980) Immunity to ticks. Adv. Parasitol. 18, 293–313.Google Scholar
  49. Willadsen P. and Kemp D. H. (1988) Vaccination with concealed antigens for tick control. Parasitol. Today 4, 196–198.CrossRefGoogle Scholar
  50. Willadsen P., Riding G. A., McKenna R. V., Kemp D. H., Tell M. R. L., Nielsen J. N., Lahnstein J., CobonG. S. and Gough J. M. (1989) Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol. 143, 1346–1351.PubMedGoogle Scholar
  51. Willadsen P. and Riding G. A. (1980) On the biological role of a proteolytic enzyme inhibitor from the ectoparasite tick Boophilus microplus. Biochem. J. 189, 295–303.CrossRefGoogle Scholar
  52. Wong J. Y. M. and Opdebeeck J. P. (1989) Protective efficacy of antigens solubilized from gut membrane of the cattle tick Boophilus microplus. Parasite Immunol. 12, 75–79.CrossRefGoogle Scholar

Copyright information

© ICIPE 1993

Authors and Affiliations

  • Moses K. H. Limo
    • 1
  • David C. Seldin
    • 2
  • Wolf P. Voigt
    • 1
  • Onesmo K. Ole Moiyoi
    • 1
  1. 1.International Laboratory for Research on Animal Diseases (ILRAD)NairobiKenya
  2. 2.Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations