Aerodynamic Parameters and Design of Flight Surface of the Mosquito Culex Quinquefasciatus (Diptera:Culicidae) Say
Abstract
The biophysical characters of the mosquito, Culex quinquefasciatus, a dreaded vector of bancroftian Filariasis was investigated. The data represents the “system” in bioaerodynamics which comprises the adult mosquito and induced air, and constitutes “action-reaction pair” for the hovering flight. Hence the static and dynamic parameters of this species are determined. An expression for moment of inertia of the flight surface (wing) is deduced considering wing design and geometry. Further aerodynamic requirements in relation to flight performance of the insect are elaborated. It is concluded that this study provides useful information on the hovering flight behaviour of the mosquito C. quinquefasciatus.
Key Words
System action-reaction pair moment of inertia flight surface wing beatRésumé
Les caractéres biophysiques du moustique Culex quinquefasciatus, un vecteur redoutable de la Filariose ont été étudiés. Les données représentent le systéme en bioaérodynamisme comprenant l’adulte de moustique et Pair induit, constituant le couplage action-réaction pour les voltiges. Ainsi les paramétres statisques et dynamiques de cette espéce ont été déterminés. Une expression du moment d’inertie du vol de surface (aile) est déduite en considérant la conception et la géométrie de l’aile. Des exigences aérodynamiques en relation avec la performance de vol de l’insecte ont été établies. Cette étude donne des informations utiles sur le comportement de vol du moustique, C. quinquefasciatus.
Mots Clés
Systéme couplage action-réaction moment d’inertie surface de vol battement des ailesPreview
Unable to display preview. Download preview PDF.
References
- Adeel Ahmed (1978) Studies on bioacoustics and aerodynamics of flier, Ph.D. thesis Osmania University.Google Scholar
- Adeel Ahmed and Gopalakrishna G. (1979) Wing beat frequency of a flier: A brief review. In Vistar in Molecular Solid State and Biophysics (Edited by Murty A. S. N. and Kumar V.).Google Scholar
- Adeel Ahmed (1982) Effect of body phenomenon and environmental influences on flight sound of the bug Tesseratoma javanica Thunberg. Ind. J. Exp. 20, 682.Google Scholar
- Adeel Ahmed (1984) A comparative study of flight surface and aerodynamic parameters of insects, birds and bats. Ind. J. Exp. 22, 270.Google Scholar
- Adeel Ahmed, Siddiqui M. A., Puranik P. G. and Ahmed Waheedullah (1986) Analysis of flight sound of insects by numerical methods. J. Acoust. Soc. Ind. 14, 40–43.Google Scholar
- Arvindababu A., Chalapathi V. V. and Chari N. (1978) Aerodynamic parameters of Chrysocoris purpureus. Entomon 3, 1.Google Scholar
- Chadwick L. E. (1985) The motion of the wings. In Insect Physiology (Edited by Roeder K. D.). publ. Int. Book & periodicals. Supply service, New Delhi.Google Scholar
- Hasan S. N., Adeel Ahmed and Chari N. (1983) Analysis of wing vibrations of mosquito Anopheles stephensi. Entomon 8, 247s.Google Scholar
- Hasan S. N., Adeel Ahmed and Chari N. (1984) Aerodynamic parameters and design of flight surface of mosquito Anopheles stephensi. Entomon 9, 247.Google Scholar
- Neville A. C. (1965) Energy and economy in insect flight. Sci. Prog. 53, 203.Google Scholar
- Puranik P. G. and Adeel Ahmed (1976) Fourier analysis of the flight sound of the pentatomid bug Tessaratoma javanica Thunberg and pressure pattern of its wings. Ind. J. Exp. 14, 279.Google Scholar
- Vogel S. (1966) Flight in Drosophila I. Flight performance of tethered flier. J. Exp. Biol. 44, 567.Google Scholar
- Weis Fogh T. and Jensen M. (1965) Biology and physics of locust flight. Basic principles in insect flight. A critical review. Phyl. Trans. Res. Soc. 239(B), 415.Google Scholar