Advertisement

Ophorin of the Larval Stalk Borer, Busseola Fusca: Purification and Properties

  • Dorington O. Ogoyi
  • Ellie O. Osir
  • James O. Ochanda
Article

Abstract

Lipophorin was isolated from the stalk borer, Busseola fusca, larvae by ultracentrifugation in a KBr density-gradient. The lipophorin ( Mr ~ 700,000) is a high density lipoprotein (density = 1.13 g/ml) composed of 46% lipids and 4% carbohydrates. It consists of two apoproteins, apolipophorin-I (apoLp-I, Mr ~ 210,000) and apolipophorin-II (apoLp-II, Mr ~78,000). Both apoproteins are glycosylated as shown by periodate Schiff reagent staining and binding to the lectin, concanavalin A. Amino acid composition analysis of lipophorin showed predominance of aspartate (13%), glutamate (9%) and glycine (9%).

In an immunoblotting experiment, both apoproteins showed immunoreactivity with antiserum to B. fusca lipophorin and no cross-reactivity occurred with any other haemolvmph proteins. Immunodiffusion studies with the same antibodies showed cross-reactivity with haemolymph derived from other Lepidoptera and not from Orthoptera, Dictyoptera or Diptera.

Key Words

Busseola fusca lipophorin physico-chemical properties immunological properties 

Résumé

Une lipophorine a été isolée des larves de Busseola fusca, par ultracentrifugation avec gradient de densité. La lipophorine dont le poids moléculaire est d’environ ~700,000 est une lipoprotéine de densité élevée (1.13 mg/ml) composée de 46% de lipides et de 4% de glucides. La lipophorine comporte 2 apoprotéines: l’apolipophorine-I (apoLp-I, de poids moléculaire environ ~210,000) et l’apolipophorine-II (apoLp-II, de poids moléculaire ~78,000). Les deux apoprotéines sont glycosylées comme le démontre la coloration au réactif du périodate de Schiff (PAS). La présence de manose comportant des chaines d’oligosaccharides a été établie par la réaction d’attachement de la lipophorine à la concanavaline-A sur colonne de sépharose. L’analyse de la composition en acides aminés de la lipophorine montre une prédominance d’aspartate (13%), de glutamate (9%) et de glycine (9%). Au cours de tests d’immunoblotting, les antisera des deux apoprotéines de la lipophorine ont réagi avec les anticorps. Nos résultats suggèrent également que les lipophorines d’insectes du même ordre développeraient une cross réaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett G. J. (1959) Phosphorus assay in column chromatography. J. Biol.Chem., 234, 246–268.Google Scholar
  2. Bligh E. A. and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.CrossRefGoogle Scholar
  3. Burnette W. W. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate Polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203.CrossRefGoogle Scholar
  4. Chino H. and Kitazawa K. (1981) Diacylglycerol-carrying lipoprotein of haemolymph of the locust and some insects. J. Lipid Res. 22, 1042–1052.PubMedGoogle Scholar
  5. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A. and Smith F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  6. De Kort C. A. D. and Koopmanschap A. B. (1987) Molecular characteristics of lipophorin, the juvenile hormone binding protein in the haemolymph of the Colorado potato beetle. Arch. Insect Biochem. Physiol. 5, 255–269.CrossRefGoogle Scholar
  7. Haunerland N. H. and Bowers W. S. (1986) Binding of insecticides to lipophorin and arylphorin, two haemolymph proteins of Heliothis zea. Arch. Biochem. Physiol. 3, 87–96.CrossRefGoogle Scholar
  8. Haunerland N. H. and Bowers WS. (1989) Comparative studies on arthropod lipoproteins. Comp. Biochem. Physiol. 92 B, 137–141.CrossRefGoogle Scholar
  9. Kapitany R. A. and Zebrowski E. J. (1973) A high resolution PAS stain for Polyacrylamide gel. Anal. Biochem. 56, 361–369.CrossRefGoogle Scholar
  10. Kanost M. R., Kawooya J. K., Law J. H., Ryan R. O., Van Heusden M. C. and Ziegler R. (1990) Insect haemolymph proteins. Adv. Insect Physiol. 22, 299–396.CrossRefGoogle Scholar
  11. Laemmli U. K. (1970) Cleavage of structural protein during the assembly of the heads of Bacteriophage T. Nature 227, 680–685.CrossRefGoogle Scholar
  12. Ouchterlony O. (1968) Antibody reaction in gels. In Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  13. Osir E. O., Anderson D. R., Grimes W. J. and Law J. H. (1986) Studies on the carbohydrate moiety of vitellogenin from the tobacco hornworm, Manduca sexta. Insect Biochem. 16, 471–478.CrossRefGoogle Scholar
  14. Osir E. O., Labongo L. V. and Unnithan G. C. (1989) A high molecular weight diapause-associated protein from the stem-borer, Busseola fusca: Purification andiproperties. Arch. Insect Biochem. Physiol. 11, 173–187.CrossRefGoogle Scholar
  15. Osir E. O., Unnithan G. C., and Prestwich G. D. (1991) Juvenile hormone binding to a 500 K diapause-associated protein of the stem-borer, Busseola fusca. Comp. Biochem. Physiol. 99B, 165–169.Google Scholar
  16. Robbs S. L., Ryan R. O., Schmidt J. O., Keim P. S. and Law J. H. (1985) Lipophorin of the larval honeybee, Apis mellifera. J. Lipid Res. 26, 241–247.PubMedGoogle Scholar
  17. Ryan R. O., Schmidt J. O. and Law J. H. (1984) Chemical and immunological properties of lipophorins from seven insect orders. Arch. Insect Biochem. Physiol. 15, 375–384.CrossRefGoogle Scholar
  18. Ryan R. O., Prasad S.V., Henrickson E. J., Wells M. A. and Law J. H. (1986) Lipoprotein interconversions in an insect, Manduca sexta. Evidence for a lipid transfer factor in the hemolymph. J. Biol. Chem. 261, 563–568.PubMedGoogle Scholar
  19. Shapiro J. P., Law J. H. and Wells M. A. (1988) Lipid transport in insects. Annu. Rev. Entomol. 33, 297–318.CrossRefGoogle Scholar
  20. Shapiro J. P., Keim P. S. and Law J. H. (1984) Structural studies on lipophorin, an insect lipoprotein. J. Biol. Chem. 259, 3680–3685.PubMedGoogle Scholar
  21. Shapiro J. P. and Law J. H. (1983) Locust adipokinetic hormone stimulates lipid metabolism in Manduca sexta. Biochem, Biophys. Res. Commun. 115, 929–931.CrossRefGoogle Scholar
  22. Shapiro J. P. (1988) Isolation and fluorescence studies on lipophorin from the weevil, Diaprepes abbreviatus. Arch. Insect Biochem. Physiol. 7, 119–131.CrossRefGoogle Scholar
  23. Unnithan G. C. (1987) Development and reproductive biology of the maize stem borer, Busseola fusca (Fuller) (Lepid., Noctuidae). J. Appl. Entomol. 104, 172–177.CrossRefGoogle Scholar
  24. Wells M. A., Ryan R. O., Prasad S. V. and Law J. H. (1985) A novel procedure for the purification of polipophorin III. Insect Biochem. 15, 565–571.CrossRefGoogle Scholar

Copyright information

© ICIPE 1993

Authors and Affiliations

  • Dorington O. Ogoyi
    • 1
  • Ellie O. Osir
    • 1
  • James O. Ochanda
    • 2
  1. 1.The International Centre of Insect Physiology and EcologyNairobiKenya
  2. 2.Department of BiochemistryUniversity of NairobiNairobiKenya

Personalised recommendations