Isolation and Properties of A 23-KD Haemolymph Protein From the Tsetse, glossina Morsitans Morsitans
Abstract
The haemolymph of the tsetse, Glossina morsitans morsitans, contains a low molecular weight protein of very high density (1.29 g/ml). The protein was detected in the haemolymph during all developmental stages of the insect. Purification of the protein was achieved by a combination of density gradient ultracentrifugation and repeated gel permeation chromatography. Electrophoresis under non-denaturing and denaturing conditions showed the protein to be a single polypeptide chain (M ~23,000). Amino acid analysis revealed a relatively high content of the acidic amino acids as well as serine and glycine. The protein contained lipids as shown by Sudan Black staining but was non-glycosylated. Using rabbit antiserum against the isolated protein in immunodiffusion and immunoblotting experiments, no cross-reactivity was detected with haemolymph samples from insects representing six orders. Although the function of the protein remains unknown, its uniqueness to Glossina suggests that it may have a role in the physiology of this insect.
Key Words
Glossina morsitans haemolymph protein physical properties chemical propertiesRésumé
L’hémolymphe de la mouche tsetsé, Glossina morsitans morsitans, renferme une protéine de faible poids moléculaire à densité très élevée (1,29 g/ml). La protéin a été décelée dans l’hémolymphe à tous les stades de développement de l’insecte. Sa purification est obtenu grâce à une combinaison de l’ultracentrifugation par gradient de densité et de la chromatographie repetée sur gel filtrant. L’électrophorèse en conditions non denaturante et denaturante a révelé que la protéine est une simple chaîne de polypeptide (Mr = 23,000) serine et glycine. L’analyse des acides aminés a permis de déceler un taux élevée d’acides aminés acides. La protéine contient également des lipides relevés par coloration au Noir du Soudan, mais était non glycolisée. En utilisant de l’antisérum de lapin sur la protéine isolée au cours de l’immunodiffusion et l’immunotampon, aucune réaction croisée fut détectée avec des échantillons d’hémolymphe d’insectes représentant six ordres. La fonction de la protéin reste cependant inconnue mais sa spécificité par rapport au Glossina, laisse supposer qu’elle pourrait jouer un rôle important dans la physiologie de cet insecte.
Preview
Unable to display preview. Download preview PDF.
References
- Brown J. J. and Chippendale G. M. (1978) Juvenile hormone and protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 8, 359–367.CrossRefGoogle Scholar
- Burnette W. N. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio-iodinated protein A. Anal. Biochem. 122, 195–203.CrossRefGoogle Scholar
- Bursell E., Billing K. C, Hargrove J. W., MacCabe C. T. and Slack E. (1974) Metabolism of the blood meal in tsetse flies. Acta Tropica 31, 297–320.PubMedGoogle Scholar
- Chino H. and Kitazawa K. (1981) Diacylglycerol-carrying lipoprotein of haemolymph of the locust and some insects. J. Lipid Res. 22, 1042–1052.PubMedGoogle Scholar
- Dillwith J. W. and Chippendale G. M. (1984) Purification and properties of a protein that accumulates in the fat body of prediapausing larvae of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 14, 369–381.CrossRefGoogle Scholar
- Ferkovich S. M., Silhacek D. L. and Rutter R. (1975) Juvenile hormone binding proteins in the haemolymph of Indian meal moth. Insect Biochem. 5, 141–150.CrossRefGoogle Scholar
- Goodman W. and Chang E. (1985) Juvenile hormone cellular and haemolymph binding proteins. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology (Edited by Kerkut G. A and Gilbert L. I.), Vol 7, pp. 491–510. Pergamon Press, Oxford.Google Scholar
- Hammock B. D. (1985) Regulation of juvenile hormone titer: Degradation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G. A and Gilbert L. I.), Vol. 7, pp. 431–472, Pergamon Press, Oxford.Google Scholar
- Haunerland N. H., Ryan R. O., Law J. H. and Bowers W. S. (1986) Lipophorin from the grasshopper, Gastrimargus africanus. Isolation and properties of apolipophorin-III. Insect Biochem. 16, 797–802.CrossRefGoogle Scholar
- Haunerland N. H., Ryan R. O., Law J. H. and Bowers W. S. (1987) Purification of very high density lipoprotein by differential density gradient ultracentri fligation. Anal. Biochem. 161, 307–310.CrossRefGoogle Scholar
- Kanost M. R., Kawooya J. K., Law J. H., Ryan J. O., Van Heusden M. C and Ziegler R. (1990) Insect haemolymph proteins. Adv. Insect Physiol. 22, 299–396.CrossRefGoogle Scholar
- Kapitany R. A. and Zebrowski E. J. (1973) A high resolution PAS stain for polyacrylamide gel. Anal. Biochem. 56, 361–369.CrossRefGoogle Scholar
- Kawooya J. K. and Law J. H. (1983) Purification and properties of microvitellogenin of Manduca sexta. Role of juvenile hormone in appearance and uptake. Biochem. Biophys. Res. Commun. 117, 643–650.CrossRefGoogle Scholar
- Kawooya J. K., Meredith, S. C, Wells M. A., Kezdy F. J. and Law J. H. (1986) Physical and surface properties of insect apolipophorin-III. J. Biol. Chem. 261, 13588–13591.PubMedGoogle Scholar
- Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680–685.CrossRefGoogle Scholar
- Narayan K. A. (1975) Electrophoretic methods for the separation of serum lipoproteins. (Edited by Perkins E.G.), pp. 225–249. American Oil Chemists’ Society, Champaign, IL.Google Scholar
- Ochanda J. O., Osir E. O., Nguu E. K. and Olembo N. K. (1991) Lipophorin from the tsetse fly, Glossina morsitans morsitans. Comp. Biochem. Physiol. 99B, 811–814.Google Scholar
- Osir E. O., Wells M. A. and Law J. H. (1986) Studies of vitellogenin from the tobacco hornworm, Manduca sexta. Arch, insect. Biochem. Physiol. 3, 217–223.CrossRefGoogle Scholar
- Osir E. O., Labongo L. V. and Unnithan G. C (1989) A high molecular weight diapause associated protein from the stem-borer, Busseola fusca: Purification and properties. Arch. Insect Biochem. Physiol. 11, 173–187.CrossRefGoogle Scholar
- Ouchterlony O. (1968) Antibody reactions in gels. In Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
- Riddiford L. M. and Law J. H. (1983) Larval serum proteins of Lepidoptera. In the Larval Serum Proteins of Insects (Edited by Scheller K.), pp. 75–85. Thieme, Stuttgart.Google Scholar
- Rudnicka M., Sehnal F., Jarolim V. and Kochman M. (1979) Hydrolysis and binding of the juvenile hormone in the haemolymph of Galleria mellonella. Insect Biochem. 9, 569–575.CrossRefGoogle Scholar
- Shapiro J. P., Law J. H. and Wells M. A. (1988) Lipid transport in insects. A. Rev. Entomol. 33, 297–318.CrossRefGoogle Scholar
- Thomas K. K. (1979) Isolation and partial characterisation of the haemolymph lipoproteins of the wax moth, Galleria mellonella. Insect Biochem. 9, 211–219.CrossRefGoogle Scholar
- Turunen S. and Chippendale G. M. (1980) Fat body protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella: Synthesis and characteristics. Comp. Biochem. Physiol. 65B, 595–603.Google Scholar
- Van der Horst D. J., Van Doom J. M. and Beenakkers A. M. Th. (1984) Hormone-induced rearrangement of locust haemolymph lipoproteins. The involvement of glycoprotein C2. Insect Biochem. 14, 495–504.CrossRefGoogle Scholar
- Wells M. A., Ryan R. O., Prasad S. V. and Law J. H. (1985) A novel procedure for purification of apolipophorin-III. Insect Biochem. 15, 565–571.CrossRefGoogle Scholar