Advertisement

International Journal of Tropical Insect Science

, Volume 22, Issue 3, pp 215–220 | Cite as

Effect of Temperature on the Development of Orius Albidipennis Reuter, a Predator of the African Legume Flower Thrips, Megalurothrips Sjostedti Trybom

  • L. M. Gitonga
  • B. Löhr
  • W. A. OverholtEmail author
  • J. K. Magambo
  • J. M. Mueke
Research Article

Abstract

The effects of temperature on the development of Orius albidipennis (Reuter) (Hemiptera: Anthocoridae), reared on its prey, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), were studied in the laboratory. Nymphal mortality was 87, 48 and 38 % at 20, 25 and 30 °C, respectively. With the exception of first-instar nymphs, percentage mortality was lowest at 25 °C. Pre-oviposition period and longevity decreased with an increase in temperature. Mean daily and total fecundity were 2.1 and 76.4 respectively at 25 °C. The mean developmental period from oviposition to adult eclosion was 27.7, 14.1 and 10.9 days at 20, 25 and 30 °C respectively. There was a linear relationship between temperature and developmental rate (1 /day) of O. albidipennis. Lower thermal thresholds were 13.8, 13.5, 12.7, 15.0, 13.8 and 12.5 °C for eggs and nymphal stages 1 to 5, respectively, with the corresponding average degree-day requirement of 46.9, 42.6, 33.3, 29.2, 26.1 and 51.4 days,, respectively. The implications of these results for biological control of thrips are discussed.

Key Words

thrips Orius albidipennis Megalurothrips sjostedti temperature biological control predation 

Résumé

Les effets de la température sur le développement d’Orius albidipennis (Reuter) (Hemiptera: Anthocoridae) élevé sur sa proie, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), ont été étudiés au laboratoire. La mortalité des nymphes est respectivement de 87,48 et 38% à 20, 25 et 30 °C. A l’exception de la nymphe de 1er stade, la mortalité est plus faible à 25 °C. La durée de pré-oviposition et la longévité diminuent lorsque la température augmente. La fécondité moyenne journalière et totale sont respectivement de 2,1 et 76,4 à 25 °C. La durée moyenne de développement de l’oviposition à l’émergence de l’adulte est respectivement de 27,7, 14,1 et 10,9 jours à 20, 25 et 30 °C. Il existe une relation linéaire entre le température et le taux de développement (1/jour) d’Orius albidipennis. Les seuils thermiques de développement inférieurs sont respectivement de 13,8, 13,5, 12,7, 15,0, 13,8 et 12,5 °C pour l’oeuf et les stades nymphaux 1 à 5 avec respectivement un besoin moyen en degrés jours de 46,9,42,6,33,3,29,2,26,1 et 51,4 jours. On discute des conséquences de ces résultats sur la lutte biologique contre les thrips.

Mots Clés

thrips Orius albidipennis Megalurothrips sjostedti température lutte biologique prédation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carnero A., Pena M. A., Perez-Padron G. F., Garrido C. and Hernandez G. M. (1993) Bionomics of Orius albidipennis and Orius limbatus. Bull. IOBC/WPRS 16, 27–30.Google Scholar
  2. Castane C. and Zalom F. (1994) Artificial oviposition substrate for rearing Orius insidiosas (Hemiptera: Anthocoridae). Biological Control 4, 88–91.CrossRefGoogle Scholar
  3. Chyzik R., Klein M. and Ben-Dov Y. (1995) Reproduction and survival of the predatory bug Orius albidipennis on various arthropod prey. Entomol. Exp. Appl. 75, 27–31.CrossRefGoogle Scholar
  4. Cocuzza G. E., De Clercq P., Van De Cock M., Degheele D. and Vacante V. (1997a) Reproduction of Orius leavigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomol. Exp. Appl. 82, 101–104.CrossRefGoogle Scholar
  5. Cocuzza G. E., De Clercq P., Lizzio S., Van De Veire M., Tirry L., Degheele D. and Vacante V. (1997b) Life tables and prédation activity of Orius leavigatus and Orius albidipennis at three constant temperatures. Entomol. Exp. Appl. 85, 189–198.CrossRefGoogle Scholar
  6. Coll M. and Ridgway R. L. (1995) Functional and numerical responses of Orius insidiosus (Heteroptera: Anthocoridae) to its prey in different vegetable crops. Ann. Entomol. Soc. Am. 88, 732–738.CrossRefGoogle Scholar
  7. Isenhour D. J. and Yeargan K. V. (1981a) Predation by Orius insidiosus on soybean thrips Sericothrips variabilis: Effect of prey stage and density. Environ. Entomol. 10, 496–500.CrossRefGoogle Scholar
  8. Isenhour D. J. and Yeargan K. V. (1981b) Effect of temperature on the development of Orius insidiosus, with notes on laboratory rearing. Ann. Entomol. Soc. Am. 74, 114–116.CrossRefGoogle Scholar
  9. Kibanga C. (1996) Overview of Kenyan horticultural industry. Horticultural Trade J. 4, 3–5.Google Scholar
  10. Kiman Z. B. and Yeargan K. V. (1985) Development and reproduction of the predator Orius insidiosus (Hemiptera: Anthocoridae) reared on djets of selected plant material and arthropod prey. Ann. Entomol. Soc. Am. 78, 464–467.CrossRefGoogle Scholar
  11. Kohno K. and Kashio T. (1998) Development and prey consumption of Orius sauteri (Poppius) and O. minutus (L.) (Heteroptera: Anthocoridae) fed on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool. 33, 227–230.CrossRefGoogle Scholar
  12. Kyamanywa S. (1988) Ecological factors governing the bean flower thrips Megalurothrips sjostedti Trybom, (Thripidae) populations in cowpea/maize mixed cropped systems. PhD Thesis. Makerere University.Google Scholar
  13. Löhr B. and Michalik S. (1995) In defense of French beans: Developing an integrated pest management system for French bean production in Kenya. Horticultural Trade J. 3, 9–13.Google Scholar
  14. McCaffrey J. P. and Horsburgh R. L. (1986) Functional response of Orius insidiosus (Hemiptera: Anthocoridae) to the European red mite Panonychus ulmi (Acari: Tetranychidae), at different constant temperatures. Environ. Entomol. 15, 532–535.CrossRefGoogle Scholar
  15. Meiracker R. A. F. and Ramakers P. M. J. (1991) Biological control of western flower thrips, Frankliniella occidentalis in sweet pepper with the anthocorid predator Onus insidiosus. Med. Fac. Landbouww. Rijksuniv. Gent. 56, 241–249.Google Scholar
  16. Richards P. C. and Schmidt J. M. (1996) The suitability of some natural and artificial substrates as oviposition sites for the insidious flower bug, Orius insidiosus. Entomol. Exp. Appl. 80, 325–333.CrossRefGoogle Scholar
  17. Riudavets J. (1995) Predators of Frankliniella occidentalis Perg. and Thrips tabaci Lind.: A review. Biological Control of Thrips Pests. Wageningen Agrie. Univ. Papers 95, 46–78.Google Scholar
  18. Riudavets J. and Castane C. (1998) Identification and evaluation of native predators of Frankliniella occidentalis (Thysanoptera: Thripidae) in the Mediterranean. Environ. Entomol. 27, 86–93.CrossRefGoogle Scholar
  19. Ruberson J. R., Bush L. and Kring T. J. (1991) Photo¬periodic effect on diapause induction and development in the predator Orius insidiosus (Heteroptera: Anthocoridae). Environ. Entomol. 20, 786–789.CrossRefGoogle Scholar
  20. Ruesink P. G. (1976) Status of systems approach to pest management. Annu. Rev. Entomol. 21, 27–44.CrossRefGoogle Scholar
  21. SAS Institute (1996) Changes and Enhancements through Release 6.12. SAS Institute Inc. Cary, NC, USA, 1162 pp.Google Scholar
  22. Van De Veire M. and Degheele D. (1992) Biological control of western flower thrips, Frankliniella occidentalis Perg. (Thysanoptera: Thripidae) in glasshouse sweet peppers with Orius spp. (Hemiptera: Anthocoridae). A comparative study between O. niger Wolff and O. insidiosus (Say). Biocontr. Sci. Technol. 2, 281–283.CrossRefGoogle Scholar

Copyright information

© ICIPE 2002

Authors and Affiliations

  • L. M. Gitonga
    • 1
  • B. Löhr
    • 2
  • W. A. Overholt
    • 3
    Email author
  • J. K. Magambo
    • 1
  • J. M. Mueke
    • 4
  1. 1.Department of ZoologyJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.GTZ-IPM Horticulture ProjectNairobiKenya
  3. 3.International Centre of Insect Physiology and EcologyNairobiKenya
  4. 4.Department of ZoologyKenyatta UniversityNairobiKenya

Personalised recommendations