International Journal of Tropical Insect Science

, Volume 22, Issue 3, pp 175–182 | Cite as

Comparative Life Table Statistics of Exochomus Flaviventris Reared on the Cassava Mealybug, Phenacoccus Manihoti, Fed on Four Host Plants

  • B. R. Le RüEmail author
  • A. Mitsipa
Research Article


The demographic statistics of the ladybird Exochomus flaviventris Mader (Coleoptera: Coccinellidae) were investigated under laboratory conditions on the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae), reared on four host plants with different levels of antibiotic resistance to the mealybug: two cassava (Manihot esculenta Crantz, Euphorbiaceae) varieties, Incoza and Zanaga, Faux-Caoutchouc (FC) (hybrid of M. esculenta × M. glaziovii Muel. Arg.) and water weed (Talinum triangulare Jack, Portulacacae). Preimaginal mortality, mean oviposition time and total fecundity of female ladybirds were strongly affected by the host plant even though there was no linkage with antibiotic resistance. The net reproduction rates RQ of the predator were 1.5, 1.7 and 2.4 times higher on Zanaga than on water weed, Incoza and FC respectively, and the generation time (T) was significantly longer on Zanaga than on the other three plants. The intrinsic rate of increase rm was not modified by the antibiotic resistance of the host plants. With the two cassava varieties, Incoza and Zanaga, it was found that antibiosis significantly affected the life history parameters of the ladybird without modifying its fitness, and provided better cassava mealybug control.

Key Words

tritrophic interaction cassava Pseudococcidae antibiosis Coccinellidae life table 


Les statistiques démographiques d’Exochomus flaviventris Mader (Coleoptera, Coccinellidae) ont été étudiées, en conditions de laboratoire, sur la cochenille du manioc Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae), élevée sur 4 plantes hôtes caractérisées par différents niveaux de résistance antibiotique à la cochenille: deux variétés de manioc, Incoza et Zanaga (Manihot esculenta Crantz, Euphorbiaceae), le Faux-Caoutchouc (FC) (hybride de M. esculenta × M. glaziovii Muel. Arg.) et le Talinum (Talinum triangulare Jack, Portulacacae). La mortalité préimaginale, la durée moyenne d’oviposition et la fécondité totale des femelles de la coccinelle sont fortement influencées par la plante hôte même si aucun lien n’a pu être établit avec la résistance antibiotique. Les taux net de reproduction Ro du prédateur sont respectivement, 1,5,1,7 et 2,4 fois plus élevés sur Zanaga que sur Talinum, Incoza et FC, et le temps de génération (T) est significativement plus long sur Zanaga que sur les trois autres plantes. Le taux intrinsèque d’accroissement naturel rm n’est pas modifié par la résistance antibiotique des plantes. Si l’on ne considère que les 2 variétés de manioc, Incoza et Zanaga, on constate que l’antibiose influence significativement les paramètres de la table de vie de la coccinelle sans modifier son succès reproducteur et permet une meilleure régulation de la cochenille farineuse du manioc.

Mots Clés

interaction tritrophique manioc Pseudococcidae antibiose Coccinellidae table de vie 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrewartha H.G. and Birch L.C. (1954) The Distribution and Abundance of Animals. University of Chicago Press, Chicago and London. XV + 782 pp.Google Scholar
  2. Bigler F. (1989) Quality assessment and control in entomophagous insects used for biological control. J. Appl. Entomol. 108, 390–400.CrossRefGoogle Scholar
  3. Birch L.C. (1948) The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26.CrossRefGoogle Scholar
  4. Calatayud P.A., Rhabe Y., Delobel B., Khuong-Huu F., Tertuliano M. and Le Rü B. (1994) Influence of secondary compounds in the phloem sap of cassava on expression of antibiosis towards the mealybug Phenacoccus manihoti. Entomol. Exp. Appl. 72, 47–57.CrossRefGoogle Scholar
  5. Carter M.C., Sutherland D. and Dixon A.F.G. (1984) Plant structure and the searching efficiency of coccinellid larvae. Oecologia 63, 394–397.CrossRefGoogle Scholar
  6. Fabres G. and Kiyindou A. (1985) Comparaison du potentiel biotique de deux coccinelles prédatrices de Phenacoccus manihoti au Congo. Acta Oecol. Oecol. Appl. 6, 339–348.Google Scholar
  7. Farid A., Quisenberry S.S., Johnson J.B. and Shafii B. (1998) Impact of wheat resistance on Russian wheat aphid and a parasitoid. J. Econ. Entomol. 91, 334–339.CrossRefGoogle Scholar
  8. Farrar R.R. Jr.., Barbour J.D. and Kennedy G.G. (1994) Field evaluation of insect resistance in a wild tomato and its effects on insect parasitoids. Entomol. Exp. Appli. 71, 211–226.CrossRefGoogle Scholar
  9. Force D.C. and Messenger P.S. (1964) Fecundity, reproductive rates, and innate capacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 45, 706–715.CrossRefGoogle Scholar
  10. Fuentes-Contreras J.E., Powell W., Wadhams L.J., Pickett J.A. and Niemeyer H.M. (1996) Influence of wheat and oat cultivars on the development of the cereal aphid parasitoid Aphidius rhopalosiphi and the generalist aphid parasitoid Ephedrus plagiator. Ann. Appl. Biol. 128, 181–187.CrossRefGoogle Scholar
  11. Heinz K.M. and Parrella M.P. (1994) Poinsettia (Euphorbia pulcherrima Willd. ex Koltz.) cultivar-mediated differences in performance of five natural enemies of Bemisia argentifolii Bellows and Perring, n. sp. (Homoptera: Aleyrodidae). Biol. Control 4, 305–318.CrossRefGoogle Scholar
  12. Hemptinne J.L., Dixon A.F.G. and Coffin J. (1992) Attack strategy of ladybird beetles (Coccinellidae): Factors shaping their numerical response. Oecologia 90, 238–245.CrossRefGoogle Scholar
  13. Herren H. R. and Neuenschwander P. (1991) Biological control of cassava pests in Africa. Annu. Rev. Entomol. 36, 257–283.CrossRefGoogle Scholar
  14. Honek A. (1993) Intraspecific variation in body size and fecundity in insects: A general relationship. Oikos 66, 483–492.CrossRefGoogle Scholar
  15. Huffaker C.B., Simmonds F.J. and Laing J.E. (1976) The theoretical and empirical basis of biological control, pp. 41–78. In Theory and Practice of Biological Control (Edited by C.B. Huffaker and P.S. Messenger). Academic Press, New York, NY.CrossRefGoogle Scholar
  16. Iheagwam E. U. (1981) The influence of temperature on increase rates of the cassava mealybug, Phenacoccus manihoti Mat. Ferr. (Horn. Pseudo-coccidae). Rev. Tool. Afr. 95, 959–964.Google Scholar
  17. Kiyindou A., Le Rü B. and Fabres G. (1990) Influence de la nature et de l’abondance des proies sur l’augmentation des effectifs de deux coccinelles prédatrices de la cochenille du manioc au Congo. Entomophaga 29, 611–620.CrossRefGoogle Scholar
  18. Le Rü B. and Calatayud P.A. (1994) Interactions between cassava and arthropod pests. Afr. Crop Sci. J. 2, 385–390.Google Scholar
  19. Le Rü B. and Makaya-Makosso J.P (1999) Localisation de l’habitat de la proie par le prédateur Exochomus flaviventris Mader (Coleoptera, Coccinellidae): réponses olfactives à l’odeur de la plante, de la cochenille et du complexe plante-cochenille. Bull. Soc. Entomol. Fr. 35, 203–205.Google Scholar
  20. Le Rü B. and Mitsipa A. (2000) Influence of the host plant of the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae) on biological characteristics of the predator Exochomusflaviventris (Coleoptera: Coccinellidae). Entomol. Exp. Appl. 94, 1–4.CrossRefGoogle Scholar
  21. McGraw J.B. and Caswell H. (1996) Estimation of individual fitness from life history data. Am. Nat. 147, 47–64.CrossRefGoogle Scholar
  22. Martos A., Givovich A. and Niemeyer H.M. (1992) Effect of Dimboa, an aphid resistance factor in wheat, on the aphid predator Eriopis connexa Germar (Coleoptera: Coccinellidae). J. Chem. Ecol. 18, 469–479.CrossRefGoogle Scholar
  23. Merlin J., Lemaitre O. and Grégoire J.C. (1996) Chemical cues produced by conspecific larvae deter oviposition by the coccidophagous ladybird beetle, Cryptolaemus montrouzieri. Entomol. Exp. Appl. 79, 147–151.CrossRefGoogle Scholar
  24. Neuenschwander P. and Madojemu H.M. (1986) Mortality of the cassava mealybug, Phenacoccus manihoti Mat. Ferr. (Horn., Pseudococcidae), associated with an attack by Epidinocarsis lopezi (Hym. Encyrtidae). Bull. Soc. Entomol. Suisse 59, 57–62.Google Scholar
  25. Nsiama She H.D., Odebiyi J.A. and Herren H.R. (1984) The biology of Hyperaspis jucunda (Col.: Coccinelli¬dae) an exotic predator of the cassava mealybug Phenacoccus manihoti (Horn.: Pseudococcidae) in southern Nigeria. Entomophaga 29, 87–93.CrossRefGoogle Scholar
  26. Ponsonby D.J. and Copland M.J.W. (1995) Olfactory responses by the scale insect predator Chilocorus nigritus (F.) (Coleoptera: Coccinellidae). Biol. Sci. Technol. 5, 83–93.CrossRefGoogle Scholar
  27. Renard S. (1999) Etude de la première phase du processus de prise de nourriture de la cochenille du manioc Phenacoccus manihoti Matile-Ferrero (Homoptera, Pseudococcidae) et des caractères de la surface de la feuille impliqués dans le choix de l’hôte. Thèse de la Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgique, 169 pp.Google Scholar
  28. Reyd G. and Le Rü B. (1992) Impact of prédation by coccinellid larvae on colonies of the mealybug Phenacoccus manihoti, in crop lands. Acta Oecol. Oecol. Appl. 13, 181–191.Google Scholar
  29. Rowell-Rahier M. and Pasteeis J.M. (1992) Third trophic level influences of plant allelochemicals, pp. 243–271. In Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. II (Edited by G.A. Rosenthal and R. Berembaum). Academic Press, New York.Google Scholar
  30. Schulthess F., Neuenschwander P. and Gounou S. (1997) Multi-trophic interactions in cassava, Manihot esculenta, cropping systems in the subhumid tropics of West Africa. Agrie. Ecosyst. Environ. 66, 211–222.CrossRefGoogle Scholar
  31. Shah M.A. (1982) The influence of plant surfaces on the searching behaviour of coccinellid larvae. Entomol. Exp. Appl. 31, 377–380.CrossRefGoogle Scholar
  32. Souissi R. and Le Rü B. (1997) Comparative life table statistics of Apoanagyrus lopezi reared on the cassava mealybug Phenacoccus manihoti fed on four host-plants. Entomol Exp. Appl. 36, 113–119.CrossRefGoogle Scholar
  33. Souissi R. and Le Rü B. (1998) Influence of the host plant of the cassava mealybug Phenacoccus manihoti (Hemiptera: Pseudococcidae) on biological characteristics of its parasitoid Apoanagyrus lopezi (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 88, 75–82.CrossRefGoogle Scholar
  34. Tertuliano M. (1993) Résistance du manioc à la cochenille farineuse Phenacoccus manihoti (Homoptera, Pseudococcidae): Rôle de quelques composés biochimiques foliaires. Thèse de Doctorat de l’Université de Rennes 1, France, 98 pp.Google Scholar
  35. Tertuliano M., Dossou-Gbete S. and Le Rü B. (1993) Antixenotic and antibiotic components of resistance to the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) in various host-plants. Insect Sci. Applic. 14, 657–665.Google Scholar
  36. Thomas M.B. and Waage J.K. (1995) Integration of biological control and host plant resistance breeding for control of insect pests, pp. 1–33. In Integrating Biological Control and Host Plant Resistance Proceedings of CTA-IAR-IIBC Seminar, Addis Ababa, Ethiopia. CTA, Wageningen, Holland.Google Scholar
  37. Van den Meiracker R.A.F., Hammond W.N.O. and Van Alphen J.J.M. (1990) The role of kairomones in prey finding by Diomus sp. and Exochomus sp., two coccinellid predators of the cassava mealybug, Phena¬coccus manihoti. Entomol. Exp. Appl. 56, 209–217.CrossRefGoogle Scholar

Copyright information

© ICIPE 2002

Authors and Affiliations

  1. 1.Laboratoire d’Entomologie AppliquéeIRD/ORSTOMPointe NoireCongo
  2. 2.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations