Advertisement

International Journal of Tropical Insect Science

, Volume 22, Issue 3, pp 161–173 | Cite as

Evidence of Adaptation of Diamondback Moth, Plutella Xylostella (L.), to Pea, Pisum Sativum L.

  • Bernhard LöhrEmail author
  • Ruth Gathu
Research Article

Abstract

A strain of diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), adapted to peas was detected in 1999 in the export vegetable growing area south of Lake Naivasha in the Rift Valley Province of Kenya. The pea strain (DBM-P) was compared in laboratory studies to the normal crucifer strain (DBM-C). Whereas DBM-P performed comparably well on kales and peas, the cabbage strain (DBM-C) suffered heavy mortality on peas. Out of the 250 DBM-C first instars, only six reached adult stage on pea. In addition, larval development was prolonged by five days on peas as compared to kale, and larval growth was greatly reduced. Pupal weights of DBM-C survivors on pea were significantly lower (3.8 mg) than of DBM-P (4.6 mg) and those of both strains on kale (5.7 and 5.3 mg, respectively). Neonate larvae of the pea strain mined on both kale and pea but both the proportion of larvae mining and the number of mining days were lower than for DBM-C on kale. The latter failed completely to mine on pea.

A laboratory culture was started with the DBM-C survivors on pea and the performance of the progeny compared on kale and pea in three additional generations of selection. Larval survival increased from 2.4% in the first generation to 28.6%, 41.3% and 49.7% in the second, third and fourth generation, respectively. Pupal weight of larvae reared on pea increased with each generation of selection, but it remained significantly lower than of larvae reared on kale. In spite of the large differences in larval mining on the two host plants, performance on peas was not related to the ability of DBM-C to mine on pea but rather to the ability to initiate feeding without the normal stimuli present in crucifers. Pupal mortality for larvae from both hosts was similar when larvae of equal weight were compared, suggesting acceptable suitability of pea for larval development once the new host is accepted. The implications of these findings on adaptability of DBM to plants beyond its normal host range are discussed.

Key Words

Plutella xylostella host range new host record selection for adaptation to non-hosts 

Résumé

Une souche de la fausse-teigne des crucifères, Plutella xylostella (L.) (Lepidoptera: Plutellidae), adaptée au pois, a été observée dans une zone de cultures maraîchères d’exportation au sud du Lac Naïvasha dans la province de la Rift Valley au Kenya, en 1999. La souche élevée sur le pois (DBM-P) est comparée à la souche normale élevée sur le chou (DBM-C) en laboratoire. Bien que les performances de la souche DBM-P soient comparables sur chou et sur pois, la souche (DBM-C) a subi une mortalité considérable sur le pois; sur 250 larves du premier stade, six larves seulement ont pu atteindre le stade adulte. Par ailleurs, le développement larvaire est plus long de 5 jours sur le pois par rapport au chou. La croissance larvaire est aussi considérablement réduite. Le poids des chrysalides de la souche DBM-C élevée sur pois est significativement inférieur (3,8 mg) à celui des chrysalides de la souche DBM-P (4,6 mg), ainsi qu’à celui des chrysalides des deux souches élevées sur chou (5,7 et 5,3 mg, respectivement). Les larves neonates de la souche adaptée au pois ont miné les plants de chou et de pois, mais la proportion de larves mineuses et le nombre de jours pour miner sont inférieurs à ceux de la souche DBM-C sur chou. Cette dernière a été incapable de miner le pois. Un élevage a été mis en place au laboratoire à partir des survivants de la souche DBM-C élevés sur pois et les performances des descendants ont été comparées à celles obtenues sur chou et sur pois pendant trois générations. La survie des chenilles a augmenté de 2,4% au cours de la première génération et de 28,6%, 41,3% et 49,7% au cours des générations suivantes. Sur pois, le poids des chrysalides a augmenté après chaque génération; il est cependant resté inférieur à celui des chrysalides obtenues sur chou. En dépit d’énormes différences dans la capacité des larves à miner les deux plantes-hôtes, les performances sur pois ne sont pas liées à la capacité de la souche DBM-C à miner le pois mais plutôt à la capacité de commencer à s’alimenter sans les stimuli normaux présents dans les crucifères. La mortalité des chrysalides sur les deux plantes est identique lorsque les larves de même poids sont comparées. Ce résultat suggère que le pois convient bien au développement larvaire dès lors que le nouvel hôte est accepté. On discute des conséquences de ces résultats sur l’adaptation de la fausse-teigne des crucifères à des plantes non hôtes.

Mots Clés

Plutella xylostella la gamme hôte nouvel hôte sélection adaptative aux nouveaux hôtes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abro G. H., Jayo A. L. and Syed T. S. (1994) Ecology of diamondback moth, Plutella xylostella (L.) in Pakistan 1. Host plant preference. Pakistan J. Zool. 26, 35–38.Google Scholar
  2. Anonymous (1971) Outbreaks and new records. FAO Plant Prot. Bull. 19, 89–92.Google Scholar
  3. Berlocher S. H. and Feder J. L. (2002) Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu. Rev. Entomol. 47, 773–815.CrossRefGoogle Scholar
  4. Chen J. S. and Sun C. N. (1986) Resistance of diamondback moth (Lepidoptera: Plutellidae) to a combination of fenvalerate and piperonyl butoxide. J. Leon. Entomol. 79, 22–30.Google Scholar
  5. Dickson M. H., Eckenrode C. J. and Blamble A. E. (1984) NYIR 9602, NYIR 9605 and NYIR 8329, lepidopterous pest-resistant cabbage breeding lines. HortScience 19, 311–312.Google Scholar
  6. Eigenbrode C. J., Dickson M. H. and Lin J. (1986) Resistance in crucifers to diamondback moth and other lepidopterous pests, pp. 129–136. In Diamondback Moth Management: Proceedings of the First International Workshop (Edited by N. S. Talekar and T. D. Griggs). Asian Vegetable Research and Development Centre, Shanhua, Taiwan.Google Scholar
  7. Eigenbrode S. D. and Shelton A. M. (1990) Behaviour of neonate diamondback moth larvae (Lepidoptera: Plutellidae) on glossy-leafed resistant genotypes of Brassica oleracea L. Environ. Entomol. 19, 1566–1571.CrossRefGoogle Scholar
  8. Eigenbrode S. D. and Shelton A. M. (1992) Survival and behaviour of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S-ethyl dipropylthiocarbomate. Entomol. Exp. Appl. 62, 139–145.CrossRefGoogle Scholar
  9. Eigenbrode S. D., Stoner K. A., Shelton A. M. and Kain W. C. (1992) Characteristics of glossy leaf waxes associated with resistance to diamondback moth in Brassica oleracea. J. Econ. Entomol. 84, 1609–1618.CrossRefGoogle Scholar
  10. Eigenbrode S.D. and Espelie K.E. (1995) Effects of plant cuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171–194.CrossRefGoogle Scholar
  11. Eigenbrode S.D. and Pillai S.K. (1998) Neonate Plutella xylostella responses to surface wax components of a resistant cabbage (Brassica oleracea). J. Chem. Ecol. 24, 1611–1627.CrossRefGoogle Scholar
  12. Feder J. L. (1998) The apple maggot fly, Rhagoletis pomonella: Flies in the face of conventional wisdom about speciation?, pp. 130–144. In Endless Form: Species and Speciation (Edited by D.J. Howard and S. H. Berlocher). Oxford University Press, London/New York.Google Scholar
  13. Feng H. T. and Sun C. N. (1978) Diamondback moth resistance to methomyl in Taiwan. Science in Agriculture 26, 135–138.Google Scholar
  14. Gupta P. D. and Thorsteinson A. J. (1960a) Food plant relationship of the diamondback moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of the larva. Entomol. Exp. Appl. 3, 241–250.CrossRefGoogle Scholar
  15. Gupta P. D. and Thorsteinson A. J. (1960b) Food plant relationship of diamondback moth, Plutella maculipennis (Curt.). II. Sensory relationship of oviposition of the adult female. Entomol. Exp. Appl. 3, 305–314.CrossRefGoogle Scholar
  16. Harrison P. K. and Brubaker R. W. (1943) The relative abundance of cabbage caterpillars on cole crops grown under similar conditions. J. Econ. Entomol. 36, 589–592.CrossRefGoogle Scholar
  17. Kao C. H., Hung C. F. and Sun C. N. (1989) Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. J. Econ. Entomol. 82, 1299–1304.CrossRefGoogle Scholar
  18. Lin J., Dickson M. H. and Eckenrode C. J. (1984) Resistance of Brassica lines to the diamondback moth (Lepidoptera: Yponomeutidae) in the field, and inheritance of resistance. J. Econ. Entomol. 77, 1293–1296.CrossRefGoogle Scholar
  19. Lin J., Eigenbrode C.J. and Dickson M.H. (1983) Variation in Brassica oleracea resistance to diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 76, 1423–1427.CrossRefGoogle Scholar
  20. Löhr B. L. (2001) Diamondback moth on peas, really. Biocontr. News Info. 19, 38N–39N.Google Scholar
  21. Moore A. A. and Tabashnik B. E. (1989) Leg autotomy of adult diamondback moth (Lepidoptera: Plutellidae) in response to tarsal contact with insecticide residues. J. Econ. Entomol. 82, 381–384.CrossRefGoogle Scholar
  22. Noppun V., Miyata T. and Saito T. (1987) Selection for resistance of the diamondback moth, Plutella xylostella with fenvalerate. J. Pest. Sci. 12, 265–268.CrossRefGoogle Scholar
  23. Peng F. S., Yao M. C., Hung C. F. and Sun C. N. (1988) Teflubenzuron resistance in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 81, 1277–1282.CrossRefGoogle Scholar
  24. Reichardt A.N. (1919) Bull, of Sub-Section, Control of Plant Pests. Petrograd Committee of Rural Economy, Petrograd. 1, 6–77.Google Scholar
  25. SAS Institute (1990) SAS/STAT Users Guide. Version 6, 4th Edition. SAS Institute, Carey, NC.Google Scholar
  26. Sun C. N., Chi H. and Feng H. T. (1978) Diamondback moth resistance to diazinon and methomyl in Taiwan. J. Econ. Entomol. 71, 551–554.CrossRefGoogle Scholar
  27. Tabashnik B. E. and Cushing N. L. (1989) Quantitative genetic analysis of insecticide resistance: Variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. J. Econ. Entomol. 82, 5–10.CrossRefGoogle Scholar
  28. Tabashnik B. E., Cushing N. L. and Johnson M. W. (1987) Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-Island variation and cross-resistance. J. Econ. Entomol. 80, 1091–1099.CrossRefGoogle Scholar
  29. Talekar N. S. and Shelton A. M. (1993) Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38, 275–301.CrossRefGoogle Scholar
  30. Talekar N. S., Yang H.C., Lee S.T., Chen B. S and Sun L.Y. (1985) Annotated bibliography of diamondback moth. Asian Veg. Res. Dev. Centre Pub. 85–229, Shanhua, Taiwan, 469 pp.Google Scholar

Copyright information

© ICIPE 2002

Authors and Affiliations

  1. 1.Plant Health DivisionInternational Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations