Advertisement

International Journal of Tropical Insect Science

, Volume 7, Issue 6, pp 731–735 | Cite as

Leishmania in Kenyan Phlebotomine Sandflies—IV

Artificial Feeding and Attempts to Infect Six Species of Laboratory-Reared Sandflies with Leishmania donovani
  • J. B. Kaddu
  • M. J. Mutinga
  • M. P. Nyamori
Research Article

Abstract

Five (Sergentomyia antennatus, S. garnhami, S. schwetzi, S. ingrami and S. adleri) of the six species of sandflies fed on mammalian blood containing cultured Leishmania donovani promastigotes on day 0, were able to feed through cockerel skin membranes at 5.5, 10, 34.3, 45.7 and 95% feeding rates, respectively. Sergentomyia bedfordi was able to feed on mammalian blood only through a lizard skin membrane at 100% feeding rate. Promastigotes were found in 9.3, 25 and 37.5% of S. schwetzi, S. adleri and S. ingrami respectively, dissected on days 3–9.

The results open way for artificial feeding of Kenyan sandflies on mammalian blood through membranes, and indicate that it is necessary to select the type of membrane depending on sandfly species. The ability of L. donovani to develop in Kenyan sandflies is being investigated to experimentally establish and confirm the importance of various genera and species in the epidemiology of leishmaniasis.

Key Words

Leishmania sandflies Phlebotomus Sergentomyia artificial feeding 

Résumé

Des 6 espèces des mouches nourries sur le sang des mammifères contenant des promastigotes Leishmania donovani en culture au jour zéro, cinq des ces espèces (Sergentomyia antennatus, S. garnhami, S, schwetzi, S. ingrami et S. adleri) ètaient capables de s’alimenter à travers les membranes de la peau avec un taux d’alimentation respectif de 5,5, 10, 34,3, 45,7 et 95%. Sergentomyia bedfordi était capable de s’alimenter sur le sang mammalien seulement qu’a travers la membrane de la peau du lézard à un taux de 100%. Les promastigotes étaient trouvés dans 9.3, 25 et 37,5% de S. schwetzi, S. adleri et S. ingrami respectivement, aprés dissection aux jours 3 et 9.

Les résultats ouvrent une voie artificielle d’alimentation sur le sang mammalien à travers les membranes et indiquent qu’il est nécessaire de sélectionner le type de membrane en concordance avec l’espèce des mouches.

L’habilité de L. donovani à se développer dans les mouches Kenyanes a été étudiée pour établir experimentalement, et confirmer l’importance de divers genères et espèces dans l’épidemiologie de la leishmaniose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler S. (1947) The behaviour of a Sudan strain of Leishmania donovani in Phlebotomus papatasi. A comparison of strains of Leishmania. Trans. R. Soc. trop. Med. Hyg. 40, 701–712.CrossRefGoogle Scholar
  2. Adler S. and Theodor O. (1929) Attempts to transmit Leishmania tropica by bite: the transmission of L. tropica by Phlebotomus sergenti. Ann. trop. Med. Parasit. 23, 1–16.CrossRefGoogle Scholar
  3. Beach R. F., Mutinga M. J. and Kaddu J. B. (1982) Laboratory colonization of Phlebotomus martini Parrot 1936 (Diptera: Psychodidae) A vector of visceral leishmaniasis in Kenya. Proceedings of the 3rd Annual Medical Scientific Conference of KEMRI & KETRI, pp. 1986–1990.Google Scholar
  4. Beach R., Young D. G. and Mutinga M. J. (1983) New phlebotomine sandfly colonies: rearing Phlebotomus martini, Sergentomyia schwetzi and Sergentomyia africana (Diptera:Psycholidae). J. med. Ent. 20, 579–584.CrossRefGoogle Scholar
  5. Hertig M. and McConnell E. (1963) Experimental infection of Panamanian Phlebotomus sandflies with Leishmania. Expl Parasit. 14, 92–106.CrossRefGoogle Scholar
  6. Kaddu J. B. and Mutinga M. J. (1981) Leishmania in Kenya phlebotomine sandflies—I. Leishmania aethiopica in the midgut of naturally infected Phlebotomus pedifer. Insect Sci. Applic. 2, 245–250.Google Scholar
  7. Kaddu J. B., Mutinga M. J. and Nyamori M. P. (1984) Leishmania in Kenyan sandflies, a search for vector. Abstract XI International Congress for Tropical Medicine and Malaria. Calgary, Canada, p. 72.Google Scholar
  8. Killick-Kendrick R. (1979) Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida (Edited by Lumsden W. H. R. and Evans D. A.), Vol. 2. Academic Press, London.Google Scholar
  9. Lewis D. J. (1975) Functional morphology of the mouth parts in New World phlebotomine sandflies (Diptera: Psychodidae), Trans. R. ent. Soc. Lond. 126, 497–532.CrossRefGoogle Scholar
  10. Mutinga M. J. and Ngoka J. M. (1981) Suspected vectors of lizard leishmaniasis in Kenya and their possible role in the partial immunization of the human population against Leishmania donovani in kala-azar endemic areas, Insect Sci. Applic. 1, 207–210.Google Scholar
  11. Schlein Y., Polacheck I. and Yuval B. (1985) Mycoses, bacterial infections and antibacterial activity in sandflies (Psychodidae) and their possible role in the transmission of leishmaniasis. Parasitology 90, 57–66.CrossRefGoogle Scholar
  12. Tailor A. E. R. and Baker J. R. (1986) The Cultivation of Parasites In Vitro. Blackwell, Oxford.Google Scholar
  13. Ward R. D., Lainson R. and Shaw J. J. (1978) Some methods for feeding of laboratory-reared, neutropical sandflies (Diptera Psychodidae). Ann. trop. Med. Parasit. 72, 270–276.CrossRefGoogle Scholar
  14. World Health Organization (WHO) (1984) Technical Report Series No. 701 p. 139, Geneva.Google Scholar

Copyright information

© ICIPE 1986

Authors and Affiliations

  • J. B. Kaddu
    • 1
  • M. J. Mutinga
    • 1
  • M. P. Nyamori
    • 1
  1. 1.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations