Advertisement

International Journal of Tropical Insect Science

, Volume 11, Issue 6, pp 877–881 | Cite as

Survival and Development of Fruit Borer, Heliothis Armigera (Hübner), (Lepidoptera: Noctuidae) on Lycopersicon Spp.

  • R. K. Kashyap
  • M. K. Banerjee
  • Kalloo
  • A. N. Verma
Research Article

Abstract

Nineteen accessions from seven Lycopersicon species were bioassayed for their resistance to Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in laboratory tests at 29 ± 1°C and 65 ± 2% r.h. Data on larval developmental duration (days), survival (%) and pupal weights (mg) revealed that maximum resistance to H. armigera occurred in accessions of L. hirsutum f. glabratum and L. hirsutum. When the larvae were fed on the foliage of PI 134417 and PI 126449 accessions (L. hirsutum f. glabratum), the developmental time was longer, and survival rate and pupal weights were lower than when the larvae were fed on cultivars of L. esculentum. Rearing of H. armigera larvae through third instar is sufficient to evaluate the resistance of wild tomato foliage since most of the larval mortality occurs prior to this stage. Accessions of L. peruvianum, L. chilense, L. cheesmanii and L. pimpinellifolium proved less resistant than L. hirsutum f. glabratum and L. hirsutum but significantly more resistant than L. esculentum. Thus, among the various Lycopersicon spp. bioassayed, accessions of L. hirsutum f. glabratum seem to have most potential for breeding H. armigera resistant cultivars.

Key Words

Heliothis armigera Lycopersicon spp. L. hirsutum f. glabratum survival development 

Mots Cléfs

Heliothis armigera Lycopersicon spp. L. hirsutum f. glabratum survivance évolution 

Résumé

Dix-neuf spécimen issus de sept variétés de Lycopersicon ont fait l’objet d’une étude biologique en rapport avec leur résistance à l’Heliothis armigera (Hübner) (Lépidoptéres: Noctuidae) au cours d’une série de tests de laboratoire à 29 ± 1°C, 65 ± 2%.

Les données sur la durée (en jours) de l’évolution des larves, le pourcentage de survivance ainsi que le poids (en mg) des chrisalides — tout cela a révélé que le niveau de résistance le plus élevé vis-à-vis de l’H. armigera se trouve chez les spécimens du L. hirsutum f. glabratum et du L. hirsutum.

Lorsque les larves étaient nourries au feuillage des spécimen P1 134417 et P1 126449 (L. hirsutum f. glabratum), le cycle du développement devenait plus long, tandis que les taux de survivance ainsi que le poids des chrisalides devenaient plus bas que si les larves étaient nourries sur des variétés du L. esculentum.

Il suffisait d’observer les larves de l’H. armigera durant leur 3e étape de développement pour déterminer la résistance des feuilles de la tomate sauvage car la majeure partie de la mortalité des larves se produit avant cet âge.

Le spécimen du L. peruvianum, du L. chilense, du L. cheesmanii et du L. pimpinellifolium, se sont montrés moins résistants que le L. hirsutum f. glabratum et le L. hirsutum, mais quand même ils étaient de loin plus résistants que le L. esculentum.

Ainsi donc, parmi les différentes variétés du Lycopersicon ayant fait l’objet de l’étude biologique, les spécimens du L. hirsutum f. glabratum semblent avoir le plus de résistance contre la capacité de reproduction de l’H. armigera.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton R. L. (1970) A low cost artificial diet for the corn earworm. J. econ. Entomol. 63, 1969–1970.CrossRefGoogle Scholar
  2. Dimock M. B. and Kennedy G. G. (1983) The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol. Exp. Appl. 33, 263–268.CrossRefGoogle Scholar
  3. Duffey S. S. and Isman M. B. (1981) Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia 37, 574–576.CrossRefGoogle Scholar
  4. Farrar R. R. Jr. and Kennedy G. G. (1987a) 2-Undecanone, a constituent of the glandular trichomes of Lycopersicon hirsutum f. glabratum: Effects on Heliothis zea and Manduca sexta growth and survival. Entomol. Exp. Appl. 43, 17–23.CrossRefGoogle Scholar
  5. Farrar R. R. Jr. and Kennedy G. G. (1987b) Growth, food consumption and mortality of Heliothis zea larvae on the foliage of wild tomato, Lycopersicon hirsutum f. glabratum and the cultivated tomato, L. esculentum. Entomol. Exp. Appl. 44, 213–219.CrossRefGoogle Scholar
  6. Farrar R. R. Jr. and Kennedy G. G. (1988) 2-Undecanone, a pupal mortality factor in Heliothis zea: sensitive larval stage an in planta activity in Lycopersicon hirsutum f. glabratum. Entomol. Exp. Appl. 47, 205–210.CrossRefGoogle Scholar
  7. Fery R. L. (1974) Resistance of tomato cultivars to fruitworm (Heliothis zea). Hort. Sci. 9, 469–470.Google Scholar
  8. Fery R. L. and Cuthbert R. L. Jr. (1975) Antibiosis in Lycopersicon to the tomato fruitworm (Heliothis zea) . J. Am. Soc. Sci. 100, 276–278.Google Scholar
  9. Kashyap R. K. (1983) Studies on resistance behaviour of tomato genotypes against fruit borer, Heliothis armigera (Hübner). Ph.D. Dissertation, Haryana Agricultural University, Hisar (India), pp. 83.Google Scholar
  10. Kashyap R. K. and Batra B. R. (1987) Influence of some crop management practices on the incidence of Heliothis armigera (Hübner) and yield of tomato (Lycopersicon esculentum Mill.) in India. Trop. Pest Manage. 33, 166–169.CrossRefGoogle Scholar
  11. Kashyap R. K., Bhutani R. D. and Kalloo (1982) Relative susceptibility and variability studies against fruit borer in tomato. Punjab Hort. J. 22, 190–193.Google Scholar
  12. Kashyap R. K. and Verma A. N. (1987a) Factors imparting resistance to fruit damage by Heliothis armigera (Hübner) in some tomato phenotypes. Insect Sci. Applic. 8, 111–114.Google Scholar
  13. Kashyap R. K. and Verma A. N. (1987b) Development and survival of fruit borer, Heliothis armigera (Hübner), on resistant and susceptible tomato genotypes. Z. Pflanz. Pflanz. 94, 14–21.Google Scholar
  14. Kennedy G. G. and Dimock M. B. (1983) 2-Tridecanone: A natural toxicant in a wild tomato responsible for insect resistance. In IUPAC Pesticide Chemistry, Human Welfare and the Environment (Edited by Miyamoto J.), pp. 123–128. Pergamon Press, New York.Google Scholar
  15. William W. G., Kennedy G. G., Yamamoto R. T., Thacker J. D. and Bordner J. (1980) 2-Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207, 888–889.CrossRefGoogle Scholar

Copyright information

© ICIPE 1990

Authors and Affiliations

  • R. K. Kashyap
    • 1
  • M. K. Banerjee
    • 2
  • Kalloo
    • 2
  • A. N. Verma
    • 1
  1. 1.Department of EntomologyHaryana Agricultural UniversityHisarIndia
  2. 2.Department of Vegetable CropsHaryana Agricultural UniversityHisarIndia

Personalised recommendations