Advertisement

Insect Antifertility and Antifeedant Allelochemics in Adhatoda Vasica

  • B. P. Saxena
  • K. Tikku
  • C. K. Atal
  • Opender Koul
Research Article

Abstract

Various alkaloids from Adhatoda vasica (Acanthaceae) were found to be responsible for the antifertility and antifeedant activity of the extracts of the plant against insects. Among the major alkaloids vasicine, vasicinol and vasicinone severe antifertility effects were exhibited by vasicinol against Dysdercus koenigii and Tribolium castaneum due to blocking of oocytes in the oviduct. Feeding deterrence was observed against Aulacophora foveicollis and Epilachna vijintioctopunctata at 0.05 and 0.1% levels of these compounds. These allelochemics appear to show a dual activity vis-à-vis a species specificity.

Key Words

Insects antifertility antifeedants Adhatoda vasica allelochemics alkaloids 

Résumé

Nous avons établi qu’un certain nombre d’alcaloides extraits de l’Adhatoda vasica étaient à l’origine des réactions stérilisante et anti-appetent de la plante à l’égard des insectes. Parmi les trois alcaloides principaux: vasicine, vasicinone et vasicinol, ce dernier presente de puissants effets stérilisants contre le Dysdercus koenigii et le Tribolium castaneum, par arrêt des oocytes sur le chemin de l’oviducte. La fonction d’anti-appetent de ces composes à des taux compris entre 0.05 et 0.1% a pu etre observée contre l’Aulacophora foveicollis et l’Epilachna vijintioctopunctata.

L’apparait donc que ces matières chemiques allelomorphes presentent deux fonctions qui s’exercent sur la spécificité des especes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhalla H. L., D’Cruz J. L. and Kokate C. K. (1982) Improved method of extraction and analysis of vasicine and vasicinone, the alkaloids of Adhtoda vasica Nees. Indian Drugs 20, 16–18.Google Scholar
  2. Bowers W. S., Ohta T., Cleere J. S. and Marsella P. A. (1976) Discovery of insect anti-juvenile hormones in plants. Science 193, 542–547.CrossRefGoogle Scholar
  3. Casida J. E. (1976) Prospectus for new types of insecticides. In The Future for Insecticides (Edited by Metcalf R. L. and Mckelvey J. J. Jr), pp. 349–366. Wiley, New York.Google Scholar
  4. Chopra R. N., Nayar S. L. and Chopra I. C. (1956) Glossary of Indian Medicinal Plants. CSIR publication p. 7.Google Scholar
  5. Dahlman D. L. (1977) Effects of L-canavanine on the consumption and utilization of artificial diet by the tobacco hornworm Manduca sexta. Entomologia exp. appl. 24, 310–316.Google Scholar
  6. Gupta R. K. and Jain M. P. (1979) A note on total estimation of total alkaloids of Adhatoda vasica Nees. Indian Drugs 16, 160–161.Google Scholar
  7. Jain M. P., Koul S. K., Dhar K. L. and Atal C. K. (1980) Novel Norharmal alkaloids of Adhatoda vasica Nees. Phytochemistry 19, 1880–1882.CrossRefGoogle Scholar
  8. Koul O. (1982) Insect feeding deterrents in plants. Ind. Rev. Life Sci. 2, 97–125.Google Scholar
  9. Koul O. (1983a) l-Canavanine an antigonadal substance for Dysdercus koenigii. Entomologia exp. appl. 34, 297–300.CrossRefGoogle Scholar
  10. Koul O. (1983b) Feeding deterrence induced by plant limonoids in the larvae of Spodoptera litura F. Z. angew. Ent. 95, 166–171.CrossRefGoogle Scholar
  11. Koul O., Tikku K. and Saxena B. P. (1977) Mode of action of Acorus calamus L oil vapours on male adult sterility in red cotton bugs. Experientia 33, 29–31.CrossRefGoogle Scholar
  12. Metwally M. M. (1972) Effect of metepa and hempa on the ovarian development of the Khapra beetle Trogoderma granarium. Acta ent. Bohem. 69, 229–242.Google Scholar
  13. Miller P. L. (1974) Respiration—aerial gas transport. In The Physiology of Insecta (Edited by Rockestein M.), pp. 345–367. Academic Press, New York.CrossRefGoogle Scholar
  14. Openshaw H. T. (1953) The quinazoline alkaloids. In The Alkaloids (Edited by Manske R. H. F. and Homes H. L.), Vol. III, pp. 101–118. Academic Press, New York.Google Scholar
  15. Rai K. S. (1964) Cytogenetic effects of chemosterilants in mosquitoes II. Mechanism of apholate induced changes in fecundity and fertility of Aedes aegypti. Biol. Bull. 124, 119–137.CrossRefGoogle Scholar
  16. Saxena B. P., Koul O., Tikku K., Atal C. K., Suri O. P., and Suri K. A. (1979) Aristolochic acid—I, an insect chemosterilant from Aristolochia bractaeta Retz. Ind. J. exp. Biol. 17, 354–360.Google Scholar
  17. Schoonhoven L. M. (1981) Chemical mediators between plants and phytophagous insects. In Semiochemicals, Their Role in Pest Control (Edited by Nordlund D. A., Jones K. L. and Lewis W. J.), pp. 31–50. Wiley, New York.Google Scholar
  18. Shrivastava A. S., Saxena H. P. and Singh D. R. (1965) Adhatoda vasica a promising insecticide against pests of storage. Lab. Devi. 3, 138–139.Google Scholar
  19. Spath E. and Kosztler F. (1960) Secondary alkaloids from Adhatoda vasica. Montash. Chem. 91, 1150–1151.CrossRefGoogle Scholar
  20. Taniguchi M., Yamaguchi M., Kubo I. and Kubota T. (1979) Inhibitory effects of Isodon diterpenoids on growth and mitochondrial oxidative phosphorylation in lepidopterous insects. Agric, biol. Chem. 43, 71–74.Google Scholar
  21. Waiss A. C. Jr, Chan B. G., Elliger A. C., Wiseman B. R., McMillan W. W., Widstran W. W., Zuber M. S. and Keaster A. J. (1979) Maysin a flavone glycoside from corn silk with antibiotic activity towards corn earworms. J. econ. Ent. 72, 256–258.CrossRefGoogle Scholar

Copyright information

© ICIPE 1986

Authors and Affiliations

  • B. P. Saxena
    • 1
  • K. Tikku
    • 1
  • C. K. Atal
    • 1
  • Opender Koul
    • 2
  1. 1.Regional Research LaboratoryBarodaIndia
  2. 2.Malti-Chem Research CentreBarodaIndia

Personalised recommendations