International Journal of Tropical Insect Science

, Volume 13, Issue 6, pp 793–799 | Cite as

Spodoptera Frugiperda Resistance in Developing Panicles of Sorghum Accessions

  • Moussa M. Diawara
  • B. R. Wiseman
  • D. J. Isenhour
Research Article


Experiments were conducted in 1989 to evaluate converted sorghum accessions for preflowering extended panicle and soft-dough stage panicle feeding resistance to fall armyworm, Spodoptera Frugiperda (J. E. Smith), by incorporating plant tissue into artificial insect diet. Spodoptera Frugiperda biological parameters measured were larval and pupal weights, mean duration of the larval stage, time to adult eclosion, survivorship, fecundity, net reproductive rate, intrinsic rate of increase, and relative fitness. The converted lines IS 2246C, IS 2403C, IS 2825C, IS 7007C, IS 8337C, IS 12592C, IS 12612C, IS 12657C, IS 12666C, and IS 12681C were more resistant to both preflowering and soft-dough stage panicle feeding by S. frugiperda than the resistant check NK Savanna 5. The genotypes IS 1340C, IS 2553C, IS 2569C, IS 6911C, IS 7498C, IS 12219C, IS 12617C, IS 12662C, and IS 12664C were more resistant than the resistant check to S. frugiperda feeding in the soft-dough stage, but not in the preflowering stage of panicle development. Plant antibiosis was the major mechanism of resistance in these lines at both stages of the panicle development.

Key Words

Fall armyworm Spodoptera frugiperda Sorghum bicolor genetic resistance antibiosis converted sorghum lines 


Des lignées naines de sorgho, Sorghum bicolor (L.) Moench ont été évaluées pour déterminer leur résistance à la chenille légionnaire, Spodoptera Frugiperda (J. E. Smith) durant la phase préfloraison et la phase patte douce de la panicule. La résistance a été étudiée en incorporant des échantillons de panicule des différentes lignées dans le diète de l’insecte. Les paramètres biologiquesde l’insecte qui ont été mesurés étaient le poids des larves, le poids des nymphes, la durée de la phase larvale, le temps d’apparition de l’adulte, le taux de survivance, la fécondité, le taux net de réproduction, le taux intrinsec d’accroissement et l’aptitude relative. Les lignées naines IS 2246C, IS 2403C, IS 282SC, IS 7007C, IS 8337C, IS 12592C, IS 12612C, IS 126S7C, IS 12666C et IS 12681C étaient plus résistantes à la chenille que le témoin résistant NK Savanna 5 durant la phase préfloraison aussi bien que la phase patte douce de la panicule. Les lignées IS 1340C, IS 2S53C, IS 2S69C, IS 6911C, IS 7498C, IS 12219C, IS 12617C, IS 12662C et IS 12664C étaient plus résistantes que le témoin résistant durant la phase patte douce de la panicule, mais pas durant la phase préfloraison. L’antibiose était le méchanisme majeur de la résistance chez ces lignées de sorgho aux deux phases de la panicule qui ont été testées.

Mots Clés

Chenille légionnaire Spodoptera frugiperda Sorghum bicolor résistance génétique antibiose lignées naines de sorgho 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews K. L. (1988) Latin American research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 71, 630–653.CrossRefGoogle Scholar
  2. Ashley T. R., Wiseman B. R., Davis F. M. and Andrews K. L. (1989) The fall armyworm: A bibliography. Fla. Entomol. 72, 152–202.CrossRefGoogle Scholar
  3. Birch L. C. (1948) The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26.CrossRefGoogle Scholar
  4. Bums R. E. (1971) Methods of estimation of tannin in grain sorghum. Agron. J. 63, 511–512.CrossRefGoogle Scholar
  5. Burton R. L. and Perkins W. D. (1989) Rearing the corn earworm and the fall armyworm for maize resistance studies. In Toward Insect Resistant Maize for the Third World. Proceedings, International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects (Edited by Russell N.), pp. 37–45. International Maize and Wheat Improvement Center (CIMMYT). El Batan, Mexico.Google Scholar
  6. Cavalli-Sforza L. L. and Bodmer W. F. (1971) Genetics of Human Populations. Freeman and Co. San Francisco.Google Scholar
  7. Diawara M. M., Wiseman B. R., Isenhour D. J. and Lovell G. R. (1990) Resistance to fall armyworm in converted sorghums. Fla. Entomol. 73, 111–117.CrossRefGoogle Scholar
  8. Diawara M. M., Wiseman B. R. and Isenhour D. J. (1991a) Mechanism of whorl stage resistance to fall armyworm (Lepidoptera: Noctuidae) among converted sorghum accessions. Entomol. exp. appi. 60, 225–231.CrossRefGoogle Scholar
  9. Diawara M. M., Hill N. S., Wiseman B. R. and Isenhour D. J. (1991b) Panicle-stage resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) in converted sorghum accessions. J. econ. Entomol. 84, 337–344.CrossRefGoogle Scholar
  10. Hallman G. J., Teetes G. L. and Johnson J. W. (1984) Relationship of sorghum midge (Diptera: Cecidomyiidae) density to damage to resistans and susceptible sorghum hybrids. J. econ. Entomol. 11, 83–87.CrossRefGoogle Scholar
  11. Henderson C. F., Kinzer H. G. and Thompson E. G. (1966) Growt. and yield of grain sorghum infested into the whorl with fall armyworm. J. econ. Entomol. 59, 1001–1003.CrossRefGoogle Scholar
  12. Hough J. A. and Pimentel D. (1978) Influence of host foliage on development, survival and fecundity of gypsy moth. Environ. Entomol. 7, 97–102.CrossRefGoogle Scholar
  13. Leuck D. B. and Perkins W. D. (1972) A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance. J. econ. Entomol. 65, 482–483.CrossRefGoogle Scholar
  14. Luginbill P. (1928) The fall armyworm. US Dept. Agric. Tech. Bull. No. 34.Google Scholar
  15. Owens J. C. (1975) An explanation of terms used in insect resistance in plants. Iowa St. J. Res. 49, 513–517.Google Scholar
  16. Painter R.H. (1951) Insect Resistance in Crop Plants. The MacMillan Co. New York.CrossRefGoogle Scholar
  17. Price P. W. (1984) Insect Ecology. John Wile. and Sons, New York.Google Scholar
  18. SAS Institute (1985) SAS User’s Guide: Statistics, version 5 ed. SAS Institute, Cary, NC.Google Scholar
  19. Snedecor G. A. and Cochran W. G. (1980) Statistical Methods, 7th ed. Iowa State University, Ames.Google Scholar
  20. Stephens J.C., Miller F.R. and Rosenow D.T. (1967) Conversion of alien sorghums to early, combine genotypes. Crop Sci. 7, 396.CrossRefGoogle Scholar
  21. Swindale L. D. (1989) Welcome address. In Proceedings, International Workshop on Sorghum Stem Borers (Edited by Nwanze K. F.), pp. 3. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Patancheru, A. P. 502 324, India.Google Scholar
  22. Teetes G. L. (1980) Breeding sorghums resistant to insects. In Breeding Plants Resistant to Insects (Edited by Maxwell F. G. and Jennings P. R.), pp. 457–485. John Wile. and Sons, New York.Google Scholar
  23. Teetes G. L. (1985) Insect resistant sorghums in pest management. Insect Sci. Applic. 6, 443–451.Google Scholar
  24. Teetes G. L., Seshu Reddy K. V., Leuschner K. and House L. R. (1983) Sorghum insect identification handbook. Information Bull. No. 12. ICRISAT. Patancheru, A. P. India.Google Scholar
  25. Wiseman B. R., Pitre H. N. and Fales S. L. (1984) Differential growth responses of fall army worm larvae on developing sorghum seeds incorporated into a meridie diet. Fla. Entomol. 67, 357–367.CrossRefGoogle Scholar
  26. Wiseman B. R., Pitre H. N., Fales S. L., and Duncan R. R. (1986) Biological effects of developing sorghum panicles in a meridie diet on fall armyworm (Lepidoptera: Noctuidae) development. J. econ. Entomol. 79, 1637–1640.CrossRefGoogle Scholar
  27. Young W. R. and Teetes G. L. (1977) Sorghum entomology. Annu. Rev. Entomol. 22, 193–198.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • Moussa M. Diawara
    • 1
    • 4
  • B. R. Wiseman
    • 2
  • D. J. Isenhour
    • 3
  1. 1.Department of EntomologyUniversity of GeorgiaAthensUSA
  3. 3.Department of EntomologyUniversity of GeorgiaTiftonUSA
  4. 4.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations