International Journal of Tropical Insect Science

, Volume 13, Issue 6, pp 787–791 | Cite as

Plumbagin-Induced Ultrastructural Haemocytic Response of Dysdercus Koenigii F.

  • K. Tikku
  • Bhaskar P. Saxena
  • N. K. Satti
  • K. A. Suri
Research Article


The phytochemical ptumbagin, isolated from Plumbago zeylanica L., was applied in 2 and 5 μl doses of 0.1 % concentration on the surface of Dysdercus koenigii F. adults and its effect on the haemocytes of the bug, studied by transmission electron microscopy. All the five haemocyte types viz. the prohaemocyte, plasmatocy te, granular haemocyte, oenocytoid, and the adipohaemocy te are affected within a period of 24–48 hr.The effect begins with an acute state of vacuolization of the cells and a gradual destruction of the organelles, followed by dissolution of the plasma membrane and passing out of the internal organelles, like the mitochondria and the endoplasmic reticulum. This phenomenon is responsible for a consistent elimination of the haemocytes from the blood, leading to lowering of the resistance and mortality of the insects.

Key Words

Dysdercus koenigii Plumbago zeylanica plumbagin haemocytes ultrastructure 


La substance phytochimique plumbagin, extraite de Plumbago zeylanica L. a été appliquée à des doses de 2 et 5 microlitres dans une concentration de 0.1% sur des adultes de Dysdercus koenigii F.; et ses effets sur les hémocytes de la punaise sont observés au microscope électronique à transmission. Tous les cinq types, hémocytes, prohémocytes, plasmatocytes, granulocytes, oenocytoides et adipohémocytes sont affectés en l’espace de 24–48 heures. L’effet commence par un état de vacuolisation sévère des cellules et une destruction graduelles des organelles suivies par la dissolution de la membrane plasmique et celle des organelles internes telles que les mitochondries et le reticulum endoplasmique. Ce phénomène est responsable de l’hémolyse avec pour résultats l’abaissement de la résistance de l’insecte suivi de sa mort.

Mots Clés

Dysdercus koenigii Plumbago zeylanica plumbagin hémocytes ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akai H. and Sato S. (1973) Ultrastructure of the larval hemocytes of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Int. J. Insect Morphol. Embryol. 2, 207–231.CrossRefGoogle Scholar
  2. Francois J. (1975) L’encapsulation hémocytaire expérimentale chez le lépisme Thermobia domestica. J. Insect Physiol. 21, 1535–1546.CrossRefGoogle Scholar
  3. Jones J. C. (1967) Normal differential counts of haemocytes in relation to ecdysis and feeding in Rhodnius. J. Insect Physiol. 13, 1133–1141.CrossRefGoogle Scholar
  4. Joshi N. K. and Sehnal F. (1989) Inhibition of ecdysteroid production by plumbagin in Dysdercus cingulatus. J. Insect Physiol. 35, 737–741.CrossRefGoogle Scholar
  5. Kamionek M. and Seryczynska H. (1976) Changes in hemocyte ultrastructure of Galteria mellonella] L. (Lep., Galeriidae) caterpillars due to the effect of fungi and parasitic nematodes. Bull. Acad. pol. Sci. CI. II Ser. Sci. bìol. 24, 483–485.Google Scholar
  6. Ratcliffe N. A. and Rowley A. F. (1979) Role of hemocytes in defense against biological agents. In Insect Hemocytes, Development, Forms, Functions, and Techniques (Edited by Gupta A. P.), pp. 331–414. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  7. Sato S., Akai H. and Sawada H. (1976) An ultrastructural study of capsule formation by Bombyx mori. Annot. Zool. Jpn. 49, 177–188.Google Scholar
  8. Saxena B. P. and Tikku K. (1988) Exploitation of lacunae by some allelochemics in insect-plant interactions. In Dynamics of Insect-plant Interaction. Recent Advances and Future Trends (Edited by Ananthakrishnan T. N. and Raman R.), pp. 105–122. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.Google Scholar
  9. Saxena B.P. and Tikku K. (1990) Effectof plumbagin on haemocytes of Dysdercus koenigii F. Proc. Indian Acad. Sci. (Anim. Sci.) 99, 119–124.CrossRefGoogle Scholar
  10. Shapiro M. (1979) Changes in hemocyte populations. In Insect Hemocytes, Development, Forms, Functions and Techniques (Edited by Gupta A. P.), pp. 475–523. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  11. Sharma P. R. Tikku K. and Saxena B. P. (1986) An electron microscopic study of normal haemocytes of Poecilocerus pictus (Fab.) and their response to injected yeast cells. Insect Sci. Applic. 7, 85–91.Google Scholar
  12. Stoltz D. B. and Guzo D. (1986) Apparent haemocy tic transformations associated with parasitoid-induced inhibition of immunity in Malacosoma disstria larvae. J. Insect Physiol. 32, 377–388.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • K. Tikku
    • 1
  • Bhaskar P. Saxena
    • 1
  • N. K. Satti
    • 2
  • K. A. Suri
    • 2
  1. 1.Division of Insect PhysiologyRegional Research LaboratoryJammuIndia
  2. 2.Division of Natural Products ChemistryUSA

Personalised recommendations