Advertisement

International Journal of Tropical Insect Science

, Volume 13, Issue 5, pp 741–748 | Cite as

Bioassays of Duck Weed Vegetation Extracts

  • M. A. A. Eid
  • M. A. E. Kandil
  • Eman B. Moursy
  • G. E. M. Sayed
Research Article

Abstract

Bioassays against the fourth instar larvae of mosquito, Culex pipiens pipiens showed that the non polar part of the duck weed, Lemna minor extracts has a high insecticidal action. On the other hand, these extracts contained synomones of the duck weed which repelled the ovipositing females. By using concentrations equivalent to LC25, the survival resulting by the n. hexane was the least. The tolerance for the sublethal doses was associated with malformations in all stages. First instar larvae and recent pupae were more susceptible to the duck weed synomones than the other larval instars. The duck weed synomones repelled the ovipositing females of Piophila casei and have had an insecticidal effect on larvae and reduced resulting adults. When larvae of Spodoptera littoralis were subjected to sublethal doses of duck weed extract, malformations in the subsequent stages were found.

Key Words

Duck weed Lemna minor mosquito Culex pipiens pipiens Piophila casei Spodoptera littoralis extracts bioassay malformation 

Résumé

Les biotitrations des larves du 4ème instar du moustique, Culex pipiens pipiens ont prouvé que l’extrait du côté non-polain du duck weed, Lemna minor a un effet insecticidal, et que cet extrait contient des synomones qui ont un effet répugnant pour les femelles adultes des moustiques. L’utilisation des concentrations équivalentes à LC25 du n. hexane a donné une haute mortalité.

La tolérance coutre les doses sous-mortelles fut accompagnée des malformations de tous les stades. Les premières larves ainsi que les pupes furent les plus sensibles aux synomones.

Les synomones du duck weed n’ont pas seulement un effet répugnant pour les femelles du Piophila casei mals ont aussi un effet insecticidal centre les larves et les adultes. Quand les larves du Spodoptera littoralis furent soumises à des doses sous-mortelles des extraits du duck weed, alors celles-ci donnent des adultes malformées.

Mots Clés

Lemna minor duck weed Culex pipiens pipiens Spodoptera littoralis bio-titration synomones malformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ.Entomol. 18, 265–267.CrossRefGoogle Scholar
  2. Abraham C. C. and Ambica B. (1979) Effect of leaf and kernel extract of neem on moulting and vitellogenesis in Dysdercus cingulatus (Hetcroptera: Pyrrhocoridae). Curr. Sci. 48, 554–556.Google Scholar
  3. Ah S. I., Singh O. P. and Misra U. S. (1983) Effectiveness of plant oils against pulse beetle Callosobruchus chinensis Linn. Indian J. Entomol. 45, 6–9.Google Scholar
  4. Binder R. G. and Waiss A. C. Jr (1984) Effects of soybean leaf extracts on growth and mortality of boll worm (Lepidoptera: Noctuidae) larvae. J. econ. Entomol. 77, 1585–1588.CrossRefGoogle Scholar
  5. Chavan S. R. (1983) Chemistry of alkanes separated from leaves of Azadirachla indica and their larvicidal/insecticidal activity against mosquitoes. Proc. 2nd Int. Neem Conf. Rauischholzhausen, 25-28 May 1983. pp. 59–65.Google Scholar
  6. Feuerhake K. J. and Schmutterer H. (1982) Einfache verfahren zur Gewinnung und Formulierung von Neem Samenen xtraklen und deren wirkung auf vershiedcne. Schad inseken-z-Pflkrankh, Pfl. Schutz. 89, 737–747. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25-28 May 1983.Google Scholar
  7. Finney D. J. (1952) Probit Analysis Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, UK.Google Scholar
  8. Freedman B., Nowak L. J., Kwolek W. F., Berry E. C. and Guthrie W. D. (1979) Bioassay for plant-derived pest control agents using the European corn borer. J. econ. Entomol. 72, 541–545.CrossRefGoogle Scholar
  9. Georghiou G. P., Metcalf R. L. and Gidden F. E. (1966) Carbamate resistance in mosquitoes selection of C. p. pipiens Wiedemann for resistance to Baygon. Bull. WHO 35, 691–708.PubMedGoogle Scholar
  10. Guzman D. R. and Axtell R. C. (1986) Effect of nutrient concentration in culturing three isolates of the mosquito fungal pathogen, Lagenidium giganteum (Oomycetes: Lagenidiales), on sunflower seed extract. J. Am. Mosq. Control, Assoc. 2, 196–200.Google Scholar
  11. Jotwani M. G. and Srivastava K. P. (1983) A review of neem research in India in relation to insects. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25-28 May 1983, pp. 43–56.Google Scholar
  12. Kalpage K. S. P. and Brust R. A. (1974) Opposition attractant produced by immature Aedes atropatpus. Environ. Entomol. 2, 729–730.CrossRefGoogle Scholar
  13. Lambert L. and Kilen T. C. (1984) Influence of three soyabean plant genotypes and their Fr intercrosses on the development of five insect species. J. econ. Entomol. 77, 622–625.CrossRefGoogle Scholar
  14. Lange W. and Schmutterer H. (1982) Experiments with synergists to improve the effect of growth disrupting properties of a methanolic extract of seeds of the neem tree (Azadirachla indica). J. Plant Dis. Prot. 89, 258–265.Google Scholar
  15. Meisner J. and Aschcr K. P. (1983) Insect growth-regulating (IGR) effect of neem products on Spodoptera littoralis. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25-28 May 1983, pp. 345–352.Google Scholar
  16. Mikolajczak K. L., Madrigal R. V., Smith C. R. and Reed D. K. (1984) Insecticidal effects of cyanolipids on three species of stored product insects, European corn borer (Lepidoptera: Pyralidae) larvae, and striped cucumber beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 72, 1144–1148.CrossRefGoogle Scholar
  17. Rembold H., Forster H., Czoppelt C. H., Rai P. J. and Sieber K. P. (1983) The Azadirach tins, a group of insect growth regulators from the neem tree. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25-28 May 1983, pp. 153–162.Google Scholar
  18. Saxena R.C., Liquido J. and Justo H.D. (1981) Neem seed oil, a potential anti-feedant for the control of the rice brown planthopper Nilaparvata lugens Proc. 2nd int. Neem Conf. Rauischhohhausen 25-28 May 1983, pp. 171–188.Google Scholar
  19. Schluter U. (1984) Die wirkung Von Azadirachtin auf Gewebe Von inseklen epidermis und imaginalanlagen von Epilachna varivestis Muls (Col., Coccinellidae). Mitt, dtchs Ges. allg. angew. Enlomol. 4 (Proc. 2nd int. Neem Conf. Rauischhohhausen 25–28 May 1983).Google Scholar
  20. Schmutterer H. and Rembold H. (1980) Zur wirkung einiger Reinfraktionen aus samen von Azadirachta indica auf Fra Baktivitat und metamorphose von Epilachna varivestis (Col., Coccinellidae). Z. angew. Enlomol. 89, 179–188. (Proc. 2nd Int. Neem Conf. Rauischhohhausen 25-28 May 1983).CrossRefGoogle Scholar
  21. Schoonhovcn A. V. (1978) Use of vegetable oils to protect stored beans from Bruchid attack. J. econ. Enlomol 71, 254–257.CrossRefGoogle Scholar
  22. Sombatsiri K. and Tigvaltanont S. (1983) Effect of neem extracts on some insect pests of economic importance in Thailand. Proc. 2nd Int. Neem Conf. Rauischhohhausen, 25-28 May 1983, pp. 95–100.Google Scholar
  23. Sun Y. P., Hyman J. and Colo C. D. (1950) Toxicity index-an improved method comparing the relative toxicity of insecticides. J. econ. Entomol. 43, 45–53.CrossRefGoogle Scholar
  24. Suparvarn P., Knapp W. F. and Sigafus P. (1974) Biologically active plant extracts for control of mosquito larvae. Mosq. News 34, 398–402.Google Scholar
  25. World Health Organization (1960) Insccticidal rcsistance and vector control. 10th reportof World Health Organization, Expert Committee on Insecticides No. 191, p. 98.Google Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • M. A. A. Eid
    • 1
  • M. A. E. Kandil
    • 1
  • Eman B. Moursy
    • 1
  • G. E. M. Sayed
    • 1
  1. 1.Faculty of AgricultureCairo UniversityCairoEgypt

Personalised recommendations