Advertisement

Effect of Cyanocobalamin on Protein and Nucleic Acid Contents of Ovary of Silkworm, Bombyx mori L., During Larval, Pupal and Adult Stages of Development

  • Subrata Das
  • A. K. Medda
Article

Abstract

The effects of cyanocobalamin on the protein, RNA and DNA contents of ovary of silkworms, Bombyx mori L., were investigated. Two sets of experiments were performed, one set dealing with the changes on some selected days in protein, RNA and DNA contents after a single injection of different doses of cyanocobalamin (0.25, 0.5, 1, 2 and 5 μg/g of body weight), given on 2nd day of fifth larval instar (day 0), and the other dealing with the day-to-day variations of these cellular constituents and the effect of a particular dose (2 μg/g) of cyanocobalamin on the daily changes of the substances. In the first set of experiments, the enhanced protein content of ovary over the control value was found on day 8 (2nd day of pupa) and day 13 (adult stage) with 1, 2 and 5 μg of cyanocobalamin/g. Cyanocobalamin at the dose of 0.25 and 0.5 μg was ineffective in causing any change in protein content. Increased RNA content was noted in comparison to the control on days 3 (5th day of fifth instar), 8 and 13. In case of DNA content of ovary, the enhancement was observed on days 8 and 13 with 1, 2 and 5μ/g doses. It was further evident from day-to-day changes that protein, RNA and DNA in ovary followed a specific individual pattern of changes during the developmental period under study. Cyanocobalamin at the dose of 2 μg/g increased protein content of ovary from day 5 to day 13, RNA content from day 3 to day 13 and DNA content from day 4 to day 13 without altering the specific pattern of variation of these cellular constituents. It was further observed that ovarian weight and egg number increased with different doses (0.5–5 μ/g) of the vitamin.

Key Words

Cyanocobalamin Bombyx mori ovary protein RNA DNA 

Résumé

Des recherches ont été faites sur les effets causés par le cyanocobalamin sur les contenus en protéines, RNA et DNA du ver à soie, Bombyx mori L. On mené à bien deux séries d’expériences. L’une traite des changements notés sur certains jours choisis, en ce qui concerne les contenus en protéines, RNA et DNA après une injection unique de doses différentes de cyanocobalamin (0,25, 0,5, 1, 2 et 5 μ g/gramme de poids de corps), donnée le deuxième jour après le 5ème stade larval (jour 0). L’autre traite des variations quotidiennes de ces composants cellulaires et dé l’effet d’une dose particulière (2 μg/g) de cyanocobalamin sur les changements quotidiens des substances. Dans la première série d’expériences l’augmentation du contenu en protéines dans les ovairespar rapport à la valeur de contrôle fut remarquée au jour 8 (2 ème jour de pupa) et au jous 13 (stage adulte) avec 1, 2 et 5 /ig/g de cyanocobalamin/g. A une dose de 0,25 et 0,5 μg/g, le cyanocobalamin n’a pas altéré le contenu en protéines. On a remarqué une augmentation du RNA en comparaison avec le contrôle aux jours 3 (5ème jour du 5ème stade larval), 8 et 13. En cas de contenu de DNA dans les ovaires, l’augmentation a été observée aux jours 8 et 13, avec des doses de 1, 2 et 5 μg/g. Il a ensuite semblé évident que, selon les changements quotidiens, les protéines, le RNA et le DNA dans les ovaires suivaient un mode individuel bien spécifique de modifications au cours de la période de développement qui est étudiée. Une dose de 2 μ/g de cyanocobalamin augmentait le contenu en protéines des ovaires du jour 5 au jour 13, le contenu en RNA du jour 3 au jour 13 et le contune en DNA du jour 4 au jour 13, sans modifier le mode spécifique de variation de ces composants cellulaires. Il a été ensuite observé que la poids des ovaires et le nombre d’oeufs augmentaient avec des doses différentes (0,5-5μg/g) de la vitamine.

Mots Cléfs

Cyanocobalamin Bombyx mori ovaires protéines RNA DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abalain J. H., Jego P. and Valotaire Y. (1980) Effect of 17β-estradiol on the DNA, RNA, protein contents and on the DNA, RNA polymerases in the müllerian duct of the immature female newt (Pleurodeles waltlii Michah). Gen. Comp. Endocrinol. 40, 402–408.CrossRefGoogle Scholar
  2. Bhattacharyya A. (1981) Studies on the effects of cyanocobalamin and cobalt chloride on silkworm, Bombyx mori L., race Nistari. Ph.D. Thesis, University of Calcutta.Google Scholar
  3. Bhattacharyya A. and Medda A. K. (1981a) Effect of cyanocobalamin and cobalt chloride on lipid content of silkgland of Bombyx mori L., race Nistari. Sci. Cull. 47, 140–142.Google Scholar
  4. Bhattacharyya A. and Medda A. K. (1981b) Effect of cyanocobalamin and cobalt chloride on glycogen content of silkgland of Bombyx mori L., race Nistari. Sci. Cult. 47, 268–270.Google Scholar
  5. Bhattacharyya A. and Medda A. K. (1983) Histochemical studies on the effects of cyanocobalamin and cobalt chloride on the alkaline and acid phosphatase activity in silkgland of silkworms (Bombyx mori L.), race Nistari. Zool. Jb. Anat. 110, 403–410.Google Scholar
  6. Bradley J. T. (1983) Physiology of insect vitellogenesis: I. Protein uptake and synthesis by the ovary (a review). J. Alab. Acad. Sci. 54, 33–47.Google Scholar
  7. Carell E. F. and Seeger J. W. (1980) Ribonucleotide reductase activity in vitamin B12-deficient Euglena gracilis. Biochem. J. 188, 573–576.CrossRefGoogle Scholar
  8. Chanarin I. (1981) Annotation. How vitamin B12 acts. Br. J. Haematol. 47, 487–491.CrossRefGoogle Scholar
  9. Chinzei Y. and Tojo S. (1972) Nucleic acid changes in the whole body and several organs of the silkworm, Bombyx mori, during metamorphosis. J. Insect Physiol. 18, 1683–1698.CrossRefGoogle Scholar
  10. Gordon H. T. (1959) Minimal nutritional requirements of the German roach, Blattella germanica L. Ann. N.Y. Acad. Sci. 77, 290–351.CrossRefGoogle Scholar
  11. Hartree E. F. (1972) Determination of protein: A modification of the Lowry method that gives linear photometric response. Anal. Biochem. 48, 422–427.CrossRefGoogle Scholar
  12. House H. L. (1974) Nutrition. In The Physiology of Insects. (Edited by Rockstein M.), 2nd edition, vol. V, pp. 1–62. Academic Press, New York and London.Google Scholar
  13. Inokuchi T., Yamada M. and Nakamura K. (1983) Effect of dietary conditions on urea contents in the pupa and adult hemolymph and in the eggs of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Jap. J. Appl. Ent. Zool. 27, 99–105.CrossRefGoogle Scholar
  14. Inui T., Kawata T., Maekawa A. and Suzuki T. (1982) The effect of vitamin B12 on the performance of laying and hatchability of Japanese quail. Vitamins (Japan) 56, 297–301.Google Scholar
  15. Irie K. and Yamashita O. (1980) Changes in vitellin and yolk proteins during embryonic development in the silkworm, Bombyx mori. J. Insect Physiol. 26, 811–817.CrossRefGoogle Scholar
  16. Majumdar A. C. and Medda A. K. (1975) Studies on the thyroxine and vitamin B12 induced changes in the life cycle of silkworms. Ind. J. Physiol. Allied Sci. 29, 1–13.Google Scholar
  17. Munro H. N. and Fleck A. (1966) The determination of nucleic acids. In Methods of Biochemical Analysis. (Edited by Glick D.), vol. 14, pp. 113–176. Wiley-Inter Science, New York.Google Scholar
  18. Newberne P. M. and Young V. R. (1973) Marginal vitamin B12 intake during gestation in the rat has long term effects on the offspring. Nature (London) 242, 263–264.CrossRefGoogle Scholar
  19. Ono S., Nagayama H. and Shimura K. (1975) The occurrence and synthesis of female and egg-specific proteins in the silkworm, Bombyx mori. Insect Biochem. 5, 313–329.CrossRefGoogle Scholar
  20. Pavlov A. D. (1969) Changes in the synthesis of ribonucleic acids and protein in the kidneys in posthemorrhagic and Phenylhydrazine anemias. Paton. Fiziol. Eksp. Ter. 13, 45–48.Google Scholar
  21. Peters J. P. and Elliot J. M. (1983) Effect of vitamin B2 status on performance of the lactating ewe and gluconeogenesis from propionate. J. Dairy Sci. 66, 1917–1925.CrossRefGoogle Scholar
  22. Pollack S. B. and Telfer W. H,(1969) RNA in cecropia moth ovaries: Sites of synthesis, transport, and storage. J. Exp. Zool. 170, 1–24.CrossRefGoogle Scholar
  23. Schexnailder R. and Griffith M. (1973) Liver fat and egg production of laying hens as influenced by choline and other nutrients. Poult. Sci. 52, 1188–1194.CrossRefGoogle Scholar
  24. Schweigert B. S. (1961) Role of vitamin B2 in nucleic acid synthesis. Borden’s Rev. Nutr. Res. 22, 19–28.PubMedGoogle Scholar
  25. Seeger J. W. and Carell E. F. (1983) Recovery from vitamin B12-induced unbalanced growth: Fate of the elevated ribonucleotide reductase activity in Euglena gracilis. Plant Sci. Lett. 30, 193–201.CrossRefGoogle Scholar
  26. Takahashi J. (1955) Vitamin B12 in silkworms II. Nippon Nogei-Kagaku Kaishi 29, 711–715.CrossRefGoogle Scholar
  27. Van Tonder S. V., Ruck A., Van Der Westhuyzen J., Fernandes-Costa F. and Metz J. (1986) Dissociation of methionine synthetase (EC 2.1.1.13) activity and impairment of DNA synthesis in fruit bats (Rousettus aegyptiacus) with nitrous oxide-induced vitamin B12 deficiency. Br. J. Nutr. 55, 187–192.CrossRefGoogle Scholar
  28. Wyatt G. R. (1980) The fat body as a protein factory. In Insect Biology in the Future (Edited by Locke M. and Smith D. S.), pp. 201–225. Academic Press, New York.CrossRefGoogle Scholar

Copyright information

© ICIPE 1988

Authors and Affiliations

  • Subrata Das
    • 1
  • A. K. Medda
    • 1
  1. 1.Department of Animal PhysiologyBose Institute, P-I/12 C.I.T. Scheme VII MKankurgachiIndia

Personalised recommendations