International Journal of Tropical Insect Science

, Volume 4, Issue 4, pp 327–335 | Cite as

Influence of Temperature and Host Plant Condition on Preimaginal Development and Survival In The Sorghum Shootfly Atherigona Soccata

  • A. G. L. Delobel


—Temperature-time and temperature-velocity equations are given for egg, larval and pupal stages of the sorghum shootfly, Atherigona soccata. Preimaginal development (from egg deposition to adult emergence) on sorghum CSH-1 seedlings lasted 19.5, 26.3, 33.8 and 76.8 days at 30, 25, 20 and 15°C, respectively. The sorghum shootfly showed optimal development and survival at 30°C. Lower threshold temperatures were 13.8, 10.2 and 11.8°C for the egg, larva and pupa, respectively. Host plant condition affected larval development and survival; pupal weight was higher and larval mortality lower in insects reared on fertilized and normally watered seedlings than on unfertilized and water stressed seedlings.

Key Words

Atherigona soccata sorghum shootfly temperature host condition preimaginal development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry D. (1972) Notes on life history of a sorghum shootfly, Alherigona varia soccata. Ann. ent. Soc. Am. 65, 586–589.CrossRefGoogle Scholar
  2. Bursell E. (1960) The measurement of size in tsetse flies (Glossina). Bull. ent. Res. 51, 33–37.CrossRefGoogle Scholar
  3. Chatterjee S. and Price B. (1977) Regression Analysis by Example. John Wiley, New York.Google Scholar
  4. Chmiel S. M. and Wilson M. C. (1979) Estimating threshold temperature and heat unit accumulation required for meadow spittlebug egg hatch. Envir. Ent. 8, 612–614.CrossRefGoogle Scholar
  5. Davidson J. (1944) On the relationship between temperature and rate of development of insects at constant temperatures. J. anim. Ecol. 13, 26–38.CrossRefGoogle Scholar
  6. Delobel A. G. L. (1982) Effect of sorghum density on oviposition and survival of the sorghum shootfly, Alherigona soccata. Ent. exp. Appl. 31, 170–174.CrossRefGoogle Scholar
  7. Delobel A. G. L. and Unnithan G. C. (1981) The status of Sorghum arundinaceum as a host of Alherigona soccata Rondani in Kenya. Insect Sci. Application 2, 67–71.Google Scholar
  8. Doggett H. (1965) The development of cultivated sorghums. In Essays on Crop Plant Evolution (Ed. by Hutchinson J.). Cambridge University Press.Google Scholar
  9. Doharey K. L., Srivastava B. G., Jotwani M. G. and Dang K. (1977) Effect of temperature and humidity on the development of Alherigona soccata Rondani. Indian J. Ent. 39, 211–215.Google Scholar
  10. Finney D. J. (1971) Probit Analysis. University Press, Cambridge.Google Scholar
  11. Havelka J. (1980) Effect of temperature on the developmental rate of preimaginal stages of Aphidoletes aphidimìza (Diptera, Cecidomyiidae). Ent. exp. Appl. 27, 83–90.CrossRefGoogle Scholar
  12. Howe R. W. (1967) Temperature effects on embryonic development in insects. A. Rev. Ent. 12, 15–42.CrossRefGoogle Scholar
  13. Howe R. W. (1975) The estimation of developmental time by probit analysis. J. stored Prod. Res 11, 121–122.CrossRefGoogle Scholar
  14. Laudien H. (1973) Changing reaction systems. In Temperature and Life (Ed. by Precht H., Christopherson J., Hensel H. and Larcher W.), Springer, Berlin.Google Scholar
  15. Mertz D. B. and Robertson J. R. (1970) Some developmental consequences of handling, egg-eating and population density for flour beetle larvae. Ecology 51, 989–998.CrossRefGoogle Scholar
  16. Nye I. W. B. (1960) The Insect Pests of Graminaceous Crops of East Africa. Colonial Research Studies, 31, HMSO, London.Google Scholar
  17. Oldiges H. (1959) Der Einfluss der temperatur auf Stoffwechsel und Eiproduktion von Lepidopteren Z. angew. Ent. 44, 115–166.CrossRefGoogle Scholar
  18. Phelps R. J. and Burrows P. M. (1969) Puparial duration in Glossina morsitans orientalis under conditions of constant temperature. Ent. exp. Appl. 12, 33–43.CrossRefGoogle Scholar
  19. Purseglove J. W. (1975) Tropical Crops. Monocotyledons. Longman, London.Google Scholar
  20. Rahier M. (1978) Performance of Myzus persicae and productions of its host plant, Brassica rapa, related to plant mineral nutrition physiology. Ent. exp. Appl. 24, 621–624.CrossRefGoogle Scholar
  21. Raina A. K. (1981) Movement, feeding behaviour and growth of larvae of the sorghum shootfly, Atherigona soccata. Insect Sci. Application 2, 77–81.Google Scholar
  22. Raina A. K., Thindwa H. Z., Othieno S. M. and Corkhill R. T. (1981) Resistance in sorghum to the sorghum shootfly: larval development and adult longevity and fecundity on selected cultivars. Insect Sci. Application 2, 99–103.Google Scholar
  23. Rondani C. (1871) Diptera italica non vel minus cognita descripta aut annotata. Fase IV. Addenda Anthomyinis Prod. Vol. VI. Boll. Soc. ent. ltd. 2, 317–338.Google Scholar
  24. Scheites P. (1978) The condition of the host plant during aestivation-diapause of the stalk borers Chilo partellus and Chilo orichalcocilìella (Lepidoptera, Pyralidae) in Kenya. Ent. exp. appl. 24, 679–688.CrossRefGoogle Scholar
  25. Shie Shiang-Lin, Fan Zi-De and Su Zhou-Hua (1981) Studies on the sorghum shootfly in China. Insect Sci. Application 2, 39–47.Google Scholar
  26. Stevenson A. B. (1981) Development of the carrot rust fly, Psila rosae (Diptera: Psilidae), relative to temperature in the laboratory. Can. Ent. 113, 569–574.CrossRefGoogle Scholar
  27. Swaine G. and Wyatt C. A. (1954) Observations on the sorghum shootfly. E. Afr. agric. J. 20, 45–48.Google Scholar
  28. Taksdal G. and Baliddawa C. W. (1975) Studies of the biology of sorghum shootflies, Atherigona sp. (Muscidae: Diptera) and shootfly sorghum host plant relationship. Z. angew. Ent. 79, 239–249.CrossRefGoogle Scholar
  29. Unnithan G. C. (1981) Aspects of sorghum shootfly reproduction. Insect Sci. Application 2, 87–92.Google Scholar
  30. Weinberg H. L. and Lange W. H. (1980) Developmental rate and lower temperature threshold of the tomato pinworm. Envir. Ent. 9, 245–246.CrossRefGoogle Scholar
  31. Wigglesworth V. B. (1974) The Principles of Insect Physiology, 7th edn. Chapman & Hall, London.CrossRefGoogle Scholar
  32. Yamada Y. (1973) Fifty percent time to pupation as a measure of developmental time in Tribolium. Can. J. Genet. Cytol. 15, 223–226.CrossRefGoogle Scholar

Copyright information

© ICIPE 1983

Authors and Affiliations

  • A. G. L. Delobel
    • 1
  1. 1.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations