Advertisement

International Journal of Tropical Insect Science

, Volume 4, Issue 3, pp 255–261 | Cite as

Evidence for de Novo Biosynthesis of Osmeterial Secretions in Young Larvae of the Swallowtail Butterflies (Papilio): Deuterium Incorporation in Vivo into Sesquiterpene Hydrocarbons as Revealed by Mass Spectrometry

  • Keiichi Honda
Article

Abstract

Investigations were carried out on the origin of osmeterial secretions exuded by fourth instar larvae of Papilio helenus and P. protenor that had been reported to secrete a variety of terpenic compounds.

Variations in the chemical composition of the secretion induced by dietary and/or genetic factors were quantitative rather than qualitative in both species. Overall pattern of the chemical constituents was found to be highly species-specific and substantially invariable in a given species. Several sesquiterpene hydrocarbons secreted by the larvae were not present in detectable amounts in the leaves of the host plant, Fagara ailantoides, suggesting that the sesquiterpenes were biosynthesized by these larvae. Deuterium was efficiently incorporated in vivo into sesquiterpene hydrocarbons in the secretion, (E)-β- farncsene, β-caryophyllene, germacrene-A and germacrene-B, by topical application of deuteriumlabelled acetic acid to everted osmeteria, while similar treatment with deuterium oxide resulted in much lower incorporation of deuterium. These results provide evidence for de nova biosynthesis of sesquiterpene hydrocarbons in young Papilio larvae.

Key Words

Osmeterial secretion Papilio helenus Papilio protenor biosynthesis (E)-β-farnesene β-caryophyllene germacrene-A germacrene-B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum M. S. (1981) Chemical Defenses of Arthropods, pp. 388–393. Academic Press, New York.Google Scholar
  2. Brand J. M., Bracke J. W., Markovetz A. J., Wood D. L. and Browne L. E. (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature, Lond. 254, 136–137.CrossRefGoogle Scholar
  3. Britton G., Lockley W. J. S., Patel N. J. and Goodwin T. W. (1977) The use of deuterium from deuterium oxide as a label in studies of biosynthetic pathways. Carotenoid transformations in a Flavobacterium species. FEBS Lett. 79, 281–283.CrossRefGoogle Scholar
  4. Byers J. A., Wood D. L., Browne L. E., Fish R. H., Piatek B. and Hendry L. B. (1979) Relationship between a host plant compound, myrcene and pheromone production in the bark beetle, Ips paraconfusus. J. Insect Physiol. 25, 477–482.CrossRefGoogle Scholar
  5. Campbell I. M. (1974) Incorporation and dilution values— their calculation in mass spectrally assayed stable isotope labeling experiments. Bioorg. Chem. 3, 386–397.CrossRefGoogle Scholar
  6. Caprioli R. M. (1972) Use of stable isotopes. In Biochemical Applications of Mass Spectrometry (Ed. by Waller G. R.), pp. 735–776. John Wiley, New York.Google Scholar
  7. Eisner T., Johnessee J. S., Carrel J., Hendry L. B. and Meinwald J. (1974) Defensive use by an insect of a plant resin. Science 184, 996–999.CrossRefGoogle Scholar
  8. Eisner T., Kluge A. F., Ikeda M. I., Meinwald Y. C and Meinwald J. (1971) Sesquiterpenes in the osmeterial secretion of a papilionid butterfly, Battus polydamas. J. Insect Physiol. 17, 245–250.CrossRefGoogle Scholar
  9. Eisner T. and Meinwald Y. C (1965) Defensive secretion of a caterpillar (Papilio). Science 150, 1733–1735.CrossRefGoogle Scholar
  10. Goodfellow R. D., Huang Y.-S. and Radtke H. E. (1972) Isoprenol biosynthesis in the fly, Sarcophaga bullata. Insect Biochem. 2, 467–475.CrossRefGoogle Scholar
  11. Happ G. M. and Meinwald J. (1965) Biosynthesis of arthropod secretions—I. Monoterpene synthesis in an ant (Acanthomyops claviger). J. am. chem. Soc. 87, 2507–2508.CrossRefGoogle Scholar
  12. Hendry L. B., Piatek B., Browne L. E., Wood D. L., Byers J. A., Fish R. H. and Hicks R. A. (1980) In vivo conversion of a labelled host plant chemical to pheromones of the bark beetle Ips paraconfusus. Nature, Lond. 284, 485.CrossRefGoogle Scholar
  13. Honda K. (1980a) Volatile constituents of larval osmeterial secretions in Papilio protenor demetrius. J. Insect Physiol. 26, 39–45.CrossRefGoogle Scholar
  14. Honda K. (1980b) Osmeterial secretions of papilionid larvae in the genera Luehdorfia, Graphium and Atrophaneura (Lepidoptera). Insect Biochem. 10, 583–588.CrossRefGoogle Scholar
  15. Honda K. (1981) Larval osmeterial secretions of the swallowtails (Papilio). J. chem. Ecol. 7, 1089–1113.CrossRefGoogle Scholar
  16. Masada Y. (1975) Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry, pp. 144–180. Hiro-kawa, Tokyo.Google Scholar
  17. Meinwald J., Happ G. M., Labows J. and Eisner T. (1966) Cyclopentanoid terpene biosynthesis in a phasmid insect and in catmint. Science 151, 79–80.CrossRefGoogle Scholar
  18. Peter M. G., Waggon W.-D. and Schmid H. (1977) Identifi-zierung von farnesol als zwischenstufe in der biosynthese des cantharidins aus mevalonsäurelacton. Helv. chim. Acta 60, 2756–2762.CrossRefGoogle Scholar
  19. Prestwich G. D., Jones R. W. and Collins M. S. (1981) Terpene biosynthesis by nasute termite soldiers (Isop-tera: Nasutitermitinae). Insect Biochem. 11, 331–336.CrossRefGoogle Scholar
  20. Renwick J. A. A., Hughes P. R. and Krull I. S. (1976) Selective production of cis- and trans-verbenol from (- )-and (+ )-α-pinene by a bark beetle. Science 191, 199–201.CrossRefGoogle Scholar
  21. Schlatter Ch., Waldner E. E. and Schmid H. (1968) Zur biosynthese des cantharidins—I. Experientia 24, 994–995.CrossRefGoogle Scholar
  22. Schmialek P. (1963) Über die bildung von juvenilhormo-nen in wildseidenspinnern. Z. Naturf. 18b, 462–465.CrossRefGoogle Scholar
  23. Seligman I. M. and Doy F. A. (1973) Biosynthesis of defensive secretions in Papilio aegeus. Insect Biochem. 3, 205–215.CrossRefGoogle Scholar
  24. Seyama Y., Kawaguchi A., Kasama T., Sasaki K., Arai K., Okuda S. and Yamakawa T. (1978) Identification of sources of hydrogen atoms in fatty acids synthesized using deuterated water and stereospecifically deuterium labelled NADPH by gas chromatographic mass spectro-metric analysis. Biomed. Mass Spectrom. 5, 357–361.CrossRefGoogle Scholar
  25. Thompson A. C. and Mitlin N. (1979) Biosynthesis of the sex pheromone of the male boll weevil from monoterpene precursors. Insect Biochem. 9, 293–294.CrossRefGoogle Scholar
  26. Von Euw J., Fishelson L., Parsons J. A., Reichstein T. and Rothschild M. (1967) Cardenolides (heart poisons) in a grasshopper feeding on milkweeds. Nature, Lond. 214, 35–39.CrossRefGoogle Scholar
  27. Weinheimer A. J., Youngblood W. W., Washecheck P. H., Karns T. K. B. and Ciereszko L. S. (1970) Isolation of the elusive (— )-germacrene-A from the gorgonian, Euni-cea mammosa. Chemistry of Coelenterates. XVIII. Tetrahedron. Lett. 1970, 497–500.Google Scholar
  28. Wheeler J. H., Chung R. G., Oh S. K., Benfield E. F. and Neff S. E. (1970) Defensive secretions of Cychrine beetles (Coleoptera: Carabidae). Ann. ent. Soc. Am. 63, 469–471.CrossRefGoogle Scholar

Copyright information

© ICIPE 1983

Authors and Affiliations

  • Keiichi Honda
    • 1
  1. 1.Seishô Biological LaboratoryOdawara 250Japan

Personalised recommendations