The role of intragenomic recombination rate in the evolution of population's genetic pool


In a simple computer model of population evolution, we have shown that frequency of recombination between haplotypes during the gamete production influences the effectiveness of the reproduction strategy. High recombination rates keeps the fraction of defective alleles low while low recombination rate or uneven distributed recombination spots change the strategy of genomes' evolution and result in the accumulation of heterozygous loci in the genomes. Even short fragment of chromosome with restricted recombination influences the genetic structure of neighboring regions.

This is a preview of subscription content, access via your institution.


  1. Ayala, F.J., Kiger, J.A., 1980. Modern Genetics. The Benjamin/Cumings Pub. Comp. Inc., California.

    Google Scholar 

  2. Azbel, M., 1999. Phenomenological theory of mortality evolution: its singularities, universality, and superuniversality. Proc. Natl. Acad. Sci. USA 96, 3303–3307.

    PubMed  Article  CAS  Google Scholar 

  3. Cebrat, S., P(cekalski, A., Scharf, F., 2006. Monte Carlo simulations of the inside intron recombination. Int. J. Mod. Phys. C 17, 305–315.

    Article  CAS  Google Scholar 

  4. Coe, J.B., Mao, Y., 2005. Gompertz mortality law and scaling behavior of the Penna model. Phys. Rev. E 72, 051925.

    Article  CAS  Google Scholar 

  5. Dudkiewicz, M., Mackiewicz, P., Nowicka, A., Kowalczuk, M., Mackiewicz, D., Polak, N., Smolarczyk, K., Banaszak, J., Dudek, M.R., Cebrat, S., 2005. Correspondence between mutation and selection pressure and the genetic code degeneracy in the gene evolution. Future Generat. Comput. Systems 21 (7), 1033–1139.

    Article  Google Scholar 

  6. Garver-Apgar, C.E., Gangestad, S.W., Thorhill, R., Miller, R.D., Olp, J.J., 2006. Major histocompatibility complex alleles, sexual responsivity, and unfaithfulness in romantic couples. Psych. Sci. 17, 830–835.

    Article  Google Scholar 

  7. Gorlov, I.P., Gorlova, O.Y., 2001. Cost-benefit analysis of Recombination and its application for understanding of chiasma interference. J. Theor. Biol. 12, 12–45.

    Google Scholar 

  8. Hedrick, P.W., Black, F.L., 1997. Random mating selection within families against homozygotes for HLA in South Ameridians. Hereditas 127, 51–58.

    PubMed  Article  CAS  Google Scholar 

  9. Kliman, R.M.K., Rey, J., 1993. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol. Biol. Evol. 10, 1239–1258.

    PubMed  CAS  Google Scholar 

  10. Laszkiewicz, A., Szymczak, Sz., Cebrat, S., 2003. Speciation effect in the Penna aging model. Int. J. Mod. Phys. C 14, 765–774.

    Article  Google Scholar 

  11. Milinski, M., 1994. Hybridogenetic frogs on an evolutionary dead end raw. Trends Ecol. Evol. 9, 62.

    Article  Google Scholar 

  12. de Oliveira, P.M.C., 2006. Chromosome length scaling in haploid asexual reproduction. J. Phys.: Condens. Matter 18, 1–9.

    Article  Google Scholar 

  13. Penn, D.J., Potts, W.K., 1999. The evolution of mating preferences and major histocompatibility complex genes. Am. Naturalist 153, 145–164.

    Article  Google Scholar 

  14. Stauffer, D., Cebrat, S., 2006. Extinction in genetic bit-string model with sexual recombination. Adv. Compl. Syst. 9, 147–156.

    Article  Google Scholar 

  15. Yu, A., et al., 2001. Nature Comparison of human genetic and sequence-based physical maps. 409, 951–953.

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Stanisław Cebrat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zawierta, M., Biecek, P., Waga, W. et al. The role of intragenomic recombination rate in the evolution of population's genetic pool. Theory Biosci. 125, 123–132 (2007).

Download citation


  • Monte Carlo simulation
  • Population evolution
  • Recombination
  • Mutation
  • Recessiveness