Skip to main content
  • Special Papers: From Evolutionary Morphology to the Modern Synthesis and “Evo-Devo”
  • Published:

The proper place of hopeful monsters in evolutionary biology

Abstract

Hopeful monsters are organisms with a profound mutant phenotype that have the potential to establish a new evolutionary lineage. The Synthetic Theory of evolutionary biology has rejected the evolutionary relevance of hopeful monsters, but could not fully explain the mechanism and mode of macroevolution. On the other hand, several lines of evidence suggest that hopeful monsters played an important role during the origin of key innovations and novel body plans by saltational rather than gradual evolution. Homeotic mutants are identified as an especially promising class of hopeful monsters. Examples for animal and plant lineages that may have originated as hopeful monsters are given. Nevertheless, a brief review of the history of the concept of hopeful monsters reveals that it needs refinements and empirical tests if it is to be a useful addition to evolutionary biology. While evolutionary biology is traditionally zoocentric, hopeful monsters might be more relevant for plant than for animal evolution. Even though during recent years developmental genetics has provided detailed knowledge about how hopeful monsters can originate in the first place, we know almost nothing about their performance in natural populations and thus the ultimate difference between hopeful and hopeless. Studying the fitness of candidate hopeful monsters (suitable mutants with profound phenotype) in natural habitats thus remains a considerable challenge for the future.

This is a preview of subscription content, access via your institution.

References

  1. Akam, M., 1998. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int. J. Dev. Biol. 42, 445–451.

    PubMed  CAS  Google Scholar 

  2. Albert, V.A., Oppenheimer, D.G., Lindqvist, C., 2002. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301.

    PubMed  Article  CAS  Google Scholar 

  3. Arthur, W., 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764.

    PubMed  CAS  Google Scholar 

  4. Bateman, R.M., DiMichele, W.A., 1994. Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. In: Ingram, D.S., Hudson, A. (Eds.), Shape and Form in Plants and Fungi. Academic Press, London, pp. 63–102.

    Google Scholar 

  5. Bateman, R.M., DiMichele, W.A., 2002. Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 109–159.

    Google Scholar 

  6. Baum, D.A., Donoghue, M.J., 2002. Transference of function, heterotopy and the evolution of plant development. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 52–69.

    Google Scholar 

  7. Becker, A., Theißen, G., 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phyl. Evol. 29, 464–489.

    Article  CAS  Google Scholar 

  8. Bradley, D., Carpenter, R., Sommer, H., Hartley, N., Coen, E., 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the Plena-locus of Antirrhinum. Cell 72, 85–95.

    PubMed  Article  CAS  Google Scholar 

  9. Carroll, S.B., 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485.

    PubMed  Article  CAS  Google Scholar 

  10. Carroll, S.B., 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109.

    PubMed  Article  CAS  Google Scholar 

  11. Coen, E., 2001. Goethe and the ABC model of flower development. C. R. Acad. Sci. Paris, Sciences de la vie 324, 1–8.

    Google Scholar 

  12. Crepet, W.L., 2000. Progress in understanding angiosperm history, success, and relationships: Darwin's abominable “perplexing phenomenon”. Proc. Natl. Acad. Sci. USA 97, 12939–12941.

    PubMed  Article  CAS  Google Scholar 

  13. Cubas, P., Vincent, C., Coen, E., 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161.

    PubMed  Article  CAS  Google Scholar 

  14. Dahlgren, K.V.O. 1919. Erblichkeitsversuche mit einer dekandrischen Capsella bursa-pastoris (L.). Svensk Bot. Tidskr. 13, 48–60.

    Google Scholar 

  15. Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. Murray, London.

    Google Scholar 

  16. Dennett, D., 2002. In: Pagel, M. (Ed.), Encyclopedia of Evolution. Oxford University Press, New York, pp. E83-E92.

    Google Scholar 

  17. Dietrich, M.R., 2000. From hopeful monsters to homeotic effects: Richard Goldschmidt's integration of development, evolution and genetics. Am. Zool. 40, 738–747.

    Article  Google Scholar 

  18. Dietrich, M.R., 2003. Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nat. Rev. Genet. 4, 68–74.

    PubMed  Article  CAS  Google Scholar 

  19. Doebley, J., Stec, A., Hubbard, L., 1997. The evolution of apical dominance in maize. Nature 386, 485–488.

    PubMed  Article  CAS  Google Scholar 

  20. Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  21. Ford, V.S., Gottlieb, L.D., 1992. Bicalyx is a natural homeotic floral variant. Nature 358, 671–673.

    Article  Google Scholar 

  22. Fortey, R.A., Briggs, D.E.G., Wills, M.A., 1997. The Cambrian evolutionary ‘explosion’ recalibrated. Bioessays 19, 429–434.

    Article  Google Scholar 

  23. Frazzetta, T.H., 1970. From hopeful monsters of bolyerine snakes? Am. Nat. 104, 55–72.

    Article  Google Scholar 

  24. Frohlich, M.W., 2003. An evolutionary scenario for the origin of flowers. Nat. Rev. Genet. 4, 559–566.

    PubMed  Article  CAS  Google Scholar 

  25. Frohlich, M.W., Parker, D.S., 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25, 155–170.

    Article  Google Scholar 

  26. Gailing, O., Bachmann, K., 2000. The evolutionary reduction of microsporangia in Microseris (Asteraceae): transition genotypes and phenotypes. Plant Biol. 2, 455–461.

    Article  Google Scholar 

  27. Gehring, W.J., 1992. The homeobox in perspective. Trends Biochem. Sci. 17, 277–280.

    PubMed  Article  CAS  Google Scholar 

  28. Gilbert, S.F., Opitz, J.M., Raff, R.A., 1996. Resynthesizing evolutionary and developmental biology. Dev. Biol. 173, 357–372.

    PubMed  Article  CAS  Google Scholar 

  29. Goldschmidt, R., 1940. The Material Basis of Evolution. Yale University Press, New Haven.

    Google Scholar 

  30. Gottschalk, W., 1971. Die Bedeutung der Genmutation für die Evolution der Pflanze. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  31. Gould, S.J., 1977a. The return of hopeful monsters. Natural Hist. 86 (6), 24–30.

    Google Scholar 

  32. Gould, S.J., 1977b. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  33. Gould, S.J., Eldredge, N., 1993. Punctuated equilibrium comes of age. Nature 366, 223–227.

    PubMed  Article  CAS  Google Scholar 

  34. Haag, E.S., True, J.R., 2001. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55, 1077–1084.

    PubMed  CAS  Google Scholar 

  35. Iltis, H.H., 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886–894.

    PubMed  Article  Google Scholar 

  36. Iltis, H.H., 2000. Homeotic sexual translocation and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ. Bot. 54, 7–42.

    Google Scholar 

  37. Junker, T., 2004. Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950 (Acta Biohistorica, Bd. 8). Basilisken-Presse, Marburg.

    Google Scholar 

  38. Junker, T., Hoßfeld, U., 2001. Die Entdeckung der Evolution. Eine revolutionäre Theorie und ihre Geschichte. Wissenschaftliche Buchgesellschaft Darmstadt.

  39. Kanno, A., Saeki, H., Kameya, T., Saedler, H., Theissen, G., 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831–841.

    PubMed  Article  CAS  Google Scholar 

  40. Kellogg, E.A., 2000. The grasses: a case study in macroevolution. Annu. Rev. Ecol. Syst. 31, 217–238.

    Article  Google Scholar 

  41. Kramer, E.M., Di Stilio, V.S., Schluter, P.M., 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 1–11.

    Article  CAS  Google Scholar 

  42. Krizek, B.A., Meyerowitz, E.M., 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22.

    PubMed  CAS  Google Scholar 

  43. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C., 2003. The evolutionary origin of complex features. Nature 423, 139–144.

    PubMed  Article  CAS  Google Scholar 

  44. Levinton, J., Dubb, L., Wray, G.A., 2004. Simulations of evolutionary radiations and their application to understanding the probability of a Cambrian explosion. J. Paleont. 78, 31–38.

    Article  Google Scholar 

  45. Lewis, E.B., 1994. Homeosis: the first 100 years. Trends Genet. 10, 341–343.

    PubMed  Article  CAS  Google Scholar 

  46. Lönnig, W.-E., 2004. Dynamic genomes, morphological stasis, and the origin of irreducible complexity. In: Parisi, V., De Fonzo, V., Aluffi-Pentini, F. (Eds.), Dynamical Genetics. Research Signpost, Trivandrum, India, pp. 101–119.

    Google Scholar 

  47. Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  48. Mayr, E., Provine, W.B., 1980. The Evolutionary Synthesis, Harvard University Press, Cambridge, MA.

    Google Scholar 

  49. Meyerowitz, E.M., 2002. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485.

    PubMed  Article  CAS  Google Scholar 

  50. Meyerowitz, E.M., Smyth, D.R., Bowman, J.L., 1989. Abnormal flowers and pattern formation in floral development. Development 106, 209–217.

    Google Scholar 

  51. Moritz, D.M.L., Kadereit, J.W., 2001. The genetics of evolutionary change in Senecio vulgaris L.: a QTL mapping approach. Plant Biol. 3, 544–552.

    Article  CAS  Google Scholar 

  52. Murbeck, S.V., 1918. Über staminale Pseudapetalie und deren Bedeutung für die Frage nach der Herkunft der Blütenkrone. Lunds Universitets Årsskrift N.F. Avd. 2, Bd. 14, No. 25, Lund.

  53. Ohya, Y.K., Kuraku, S., Kuratani, S., 2005. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 107–118.

    Article  CAS  Google Scholar 

  54. Opiz, P.M., 1821. 2. Capsella apetala Opiz. Eine neue merkwürdige Pflanze. Flora Nr. 28, oder: Botanische Zeitung, Regensburg, 28. Juli 1821.

  55. Philippe, H., Chenuil, A., Adoutte, A., 1994. Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl.), 15–25.

    Google Scholar 

  56. Raff, R.A., 2005. Editorial: stand up for evolution. Evol. Dev. 7, 273–275.

    PubMed  Article  Google Scholar 

  57. Reichert, H., 1998. Eine kronblattlose Sippe des Hirtentäschels (Capsella bursa-pastoris) seit Jahren bestandsbildend bei Gau-Odernheim/Rheinhessen. Hessische Floristische Rundbriefe 47 (4), 53–55.

    Google Scholar 

  58. Reif, W.-E., Junker, T., Hoßfeld, U., 2000. The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci. 119, 41–91.

    Google Scholar 

  59. Riedl, R., 1977. A systems-analytical approach to macro-evolutionary phenomena. Quart. Rev. Biol. 52, 351–370.

    PubMed  Article  CAS  Google Scholar 

  60. Rieppel, O., 2001. Turtles as hopeful monsters. Bioessays 23, 987–991.

    PubMed  Article  CAS  Google Scholar 

  61. Ronse De Craene, L.P., 2003. The evolutionary significance of homeosis in flowers: a morphological perspective. Int. J. Plant Sci. 164, S225-S235.

    Article  Google Scholar 

  62. Rudall, P.J., Bateman, R.M., 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77, 403–441.

    PubMed  Article  Google Scholar 

  63. Rudall, P.J., Bateman, R., 2003. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci. 8, 76–82.

    PubMed  Article  CAS  Google Scholar 

  64. Rutishauser, R., Isler, B., 2001. Developmental genetics and morphological evolution of flowering plants, especially bladderworths (Utricularia): fuzzy Arberian morphology complements classical morphology. Ann. Bot. 88, 1173–1202.

    Article  Google Scholar 

  65. Rutishauser, R., Moline, P., 2005. Evo-devo and the search for “sameness” in biological systems. In: Richter, S., Olsson, L. (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 213–242.

    PubMed  Article  Google Scholar 

  66. Sattler, R., 1988. Homeosis in plants. Am. J. Bot. 75, 1606–1617.

    Article  Google Scholar 

  67. Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  68. Stuessy, T.F., 2004. A transitional-combinational theory for the origin of angiosperms. Taxon 53, 3–16.

    Article  Google Scholar 

  69. Svensson, M.E., 2004. Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Dev. Genes Evol. 214, 418–421.

    PubMed  Article  CAS  Google Scholar 

  70. Theißen, G., 2000. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower. Bioessays 22, 209–213.

    PubMed  Article  Google Scholar 

  71. Theißen, G., 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.

    PubMed  Article  Google Scholar 

  72. Theißen, G., 2002. Orthology: secret life of genes. Nature 415, 741.

    PubMed  Google Scholar 

  73. Theißen, G., 2005. Birth, life and death of developmental control genes: new challenges for the homology concept. In: Richter, S., Olsson, L., (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 199–212.

    PubMed  Google Scholar 

  74. Theißen, G., Becker, A., 2004. Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit. Rev. Plant Sci. 23, 129–148.

    Article  CAS  Google Scholar 

  75. Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U., Saedler, H., 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.

    PubMed  Article  Google Scholar 

  76. Theißen, G., Becker, A., Kirchner, C., Münster, T., Winter, K.-U., Saedler, H., 2002. How land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 173–205.

    Google Scholar 

  77. Trattinnick, L., 1821. Botanische Bemerkungen. Flora 1821, 723.

    Google Scholar 

  78. Valentine, J.W., Jablonski, D., Erwin, D.H., 1999. Fossils, molecules, and the embryo: new perspectives on the Cambrian explosion. Development 126, 851–859.

    PubMed  CAS  Google Scholar 

  79. Vargas, A.O., Fallon, J.F., 2005. Birds have dinosaur wings: the molecular evidence. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 86–90.

    Article  CAS  Google Scholar 

  80. Vergara-Silva, F., 2003. Plants and the conceptual articulation of evolutionary developmental biology. Biol. Philos. 18, 249–284.

    Article  Google Scholar 

  81. Wagner, G.P., 2000. What is the promise of developmental evolution: Part I: why is developmental biology necessary to explain evolutionary innovations? J. Exp. Zool. (Mol. Dev. Evol.) 288, 95–98.

    Article  CAS  Google Scholar 

  82. Wagner, G.P., Gauthier, J.A., 1999. 1,2,3=2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc. Natl. Acad. Sci. USA 96, 5111–5116.

    PubMed  Article  CAS  Google Scholar 

  83. Wagner, G.P., Laubichler, M.D., 2004. Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plan and evolvability. J. Exp. Zool. (Mol. Dev. Evol.) 302B, 92–102.

    Article  Google Scholar 

  84. Wagner, G.P., Müller, G.B., 2002. Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evol. Dev. 4, 1–6.

    PubMed  Article  Google Scholar 

  85. Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., Doebley, J.F., 2005. The origin of the naked grains of maize. Nature 436, 714–719.

    PubMed  Article  CAS  Google Scholar 

  86. Wang, R.-L., Stec, A., Hey, J., Lukens, L., Doebley, J., 1999. The limits of selection during maize domestication. Nature 398, 236–239.

    PubMed  Article  CAS  Google Scholar 

  87. Weiss, K.M., 2005. The phenogenetic logic of life. Nat. Rev. Genet. 6, 36–46.

    PubMed  Article  CAS  Google Scholar 

  88. Wray, G.A., Levinton, J.S., Shapiro, L.H., 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568–573.

    Article  CAS  Google Scholar 

  89. Wright, S., 1941. The material basis of evolution by R. Goldschmidt (review). Sci. Monthly 53, 165–170.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Günter Theißen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theißen, G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci. 124, 349–369 (2006). https://doi.org/10.1016/j.thbio.2005.11.002

Download citation

Keywords

  • Gradualism
  • Homeosis
  • Macroevolution
  • Synthetic theory
  • Saltational evolution