Theory in Biosciences

, Volume 124, Issue 3–4, pp 349–369 | Cite as

The proper place of hopeful monsters in evolutionary biology

Special Papers: From Evolutionary Morphology to the Modern Synthesis and “Evo-Devo”

Abstract

Hopeful monsters are organisms with a profound mutant phenotype that have the potential to establish a new evolutionary lineage. The Synthetic Theory of evolutionary biology has rejected the evolutionary relevance of hopeful monsters, but could not fully explain the mechanism and mode of macroevolution. On the other hand, several lines of evidence suggest that hopeful monsters played an important role during the origin of key innovations and novel body plans by saltational rather than gradual evolution. Homeotic mutants are identified as an especially promising class of hopeful monsters. Examples for animal and plant lineages that may have originated as hopeful monsters are given. Nevertheless, a brief review of the history of the concept of hopeful monsters reveals that it needs refinements and empirical tests if it is to be a useful addition to evolutionary biology. While evolutionary biology is traditionally zoocentric, hopeful monsters might be more relevant for plant than for animal evolution. Even though during recent years developmental genetics has provided detailed knowledge about how hopeful monsters can originate in the first place, we know almost nothing about their performance in natural populations and thus the ultimate difference between hopeful and hopeless. Studying the fitness of candidate hopeful monsters (suitable mutants with profound phenotype) in natural habitats thus remains a considerable challenge for the future.

Keywords

Gradualism Homeosis Macroevolution Synthetic theory Saltational evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akam, M., 1998. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int. J. Dev. Biol. 42, 445–451.PubMedGoogle Scholar
  2. Albert, V.A., Oppenheimer, D.G., Lindqvist, C., 2002. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301.PubMedCrossRefGoogle Scholar
  3. Arthur, W., 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764.PubMedGoogle Scholar
  4. Bateman, R.M., DiMichele, W.A., 1994. Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. In: Ingram, D.S., Hudson, A. (Eds.), Shape and Form in Plants and Fungi. Academic Press, London, pp. 63–102.Google Scholar
  5. Bateman, R.M., DiMichele, W.A., 2002. Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 109–159.Google Scholar
  6. Baum, D.A., Donoghue, M.J., 2002. Transference of function, heterotopy and the evolution of plant development. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 52–69.Google Scholar
  7. Becker, A., Theißen, G., 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phyl. Evol. 29, 464–489.CrossRefGoogle Scholar
  8. Bradley, D., Carpenter, R., Sommer, H., Hartley, N., Coen, E., 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the Plena-locus of Antirrhinum. Cell 72, 85–95.PubMedCrossRefGoogle Scholar
  9. Carroll, S.B., 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485.PubMedCrossRefGoogle Scholar
  10. Carroll, S.B., 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109.PubMedCrossRefGoogle Scholar
  11. Coen, E., 2001. Goethe and the ABC model of flower development. C. R. Acad. Sci. Paris, Sciences de la vie 324, 1–8.Google Scholar
  12. Crepet, W.L., 2000. Progress in understanding angiosperm history, success, and relationships: Darwin's abominable “perplexing phenomenon”. Proc. Natl. Acad. Sci. USA 97, 12939–12941.PubMedCrossRefGoogle Scholar
  13. Cubas, P., Vincent, C., Coen, E., 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161.PubMedCrossRefGoogle Scholar
  14. Dahlgren, K.V.O. 1919. Erblichkeitsversuche mit einer dekandrischen Capsella bursa-pastoris (L.). Svensk Bot. Tidskr. 13, 48–60.Google Scholar
  15. Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. Murray, London.Google Scholar
  16. Dennett, D., 2002. In: Pagel, M. (Ed.), Encyclopedia of Evolution. Oxford University Press, New York, pp. E83-E92.Google Scholar
  17. Dietrich, M.R., 2000. From hopeful monsters to homeotic effects: Richard Goldschmidt's integration of development, evolution and genetics. Am. Zool. 40, 738–747.CrossRefGoogle Scholar
  18. Dietrich, M.R., 2003. Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nat. Rev. Genet. 4, 68–74.PubMedCrossRefGoogle Scholar
  19. Doebley, J., Stec, A., Hubbard, L., 1997. The evolution of apical dominance in maize. Nature 386, 485–488.PubMedCrossRefGoogle Scholar
  20. Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  21. Ford, V.S., Gottlieb, L.D., 1992. Bicalyx is a natural homeotic floral variant. Nature 358, 671–673.CrossRefGoogle Scholar
  22. Fortey, R.A., Briggs, D.E.G., Wills, M.A., 1997. The Cambrian evolutionary ‘explosion’ recalibrated. Bioessays 19, 429–434.CrossRefGoogle Scholar
  23. Frazzetta, T.H., 1970. From hopeful monsters of bolyerine snakes? Am. Nat. 104, 55–72.CrossRefGoogle Scholar
  24. Frohlich, M.W., 2003. An evolutionary scenario for the origin of flowers. Nat. Rev. Genet. 4, 559–566.PubMedCrossRefGoogle Scholar
  25. Frohlich, M.W., Parker, D.S., 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25, 155–170.CrossRefGoogle Scholar
  26. Gailing, O., Bachmann, K., 2000. The evolutionary reduction of microsporangia in Microseris (Asteraceae): transition genotypes and phenotypes. Plant Biol. 2, 455–461.CrossRefGoogle Scholar
  27. Gehring, W.J., 1992. The homeobox in perspective. Trends Biochem. Sci. 17, 277–280.PubMedCrossRefGoogle Scholar
  28. Gilbert, S.F., Opitz, J.M., Raff, R.A., 1996. Resynthesizing evolutionary and developmental biology. Dev. Biol. 173, 357–372.PubMedCrossRefGoogle Scholar
  29. Goldschmidt, R., 1940. The Material Basis of Evolution. Yale University Press, New Haven.Google Scholar
  30. Gottschalk, W., 1971. Die Bedeutung der Genmutation für die Evolution der Pflanze. Gustav Fischer Verlag, Stuttgart.Google Scholar
  31. Gould, S.J., 1977a. The return of hopeful monsters. Natural Hist. 86 (6), 24–30.Google Scholar
  32. Gould, S.J., 1977b. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA, USA.Google Scholar
  33. Gould, S.J., Eldredge, N., 1993. Punctuated equilibrium comes of age. Nature 366, 223–227.PubMedCrossRefGoogle Scholar
  34. Haag, E.S., True, J.R., 2001. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55, 1077–1084.PubMedGoogle Scholar
  35. Iltis, H.H., 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886–894.PubMedCrossRefGoogle Scholar
  36. Iltis, H.H., 2000. Homeotic sexual translocation and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ. Bot. 54, 7–42.Google Scholar
  37. Junker, T., 2004. Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950 (Acta Biohistorica, Bd. 8). Basilisken-Presse, Marburg.Google Scholar
  38. Junker, T., Hoßfeld, U., 2001. Die Entdeckung der Evolution. Eine revolutionäre Theorie und ihre Geschichte. Wissenschaftliche Buchgesellschaft Darmstadt.Google Scholar
  39. Kanno, A., Saeki, H., Kameya, T., Saedler, H., Theissen, G., 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831–841.PubMedCrossRefGoogle Scholar
  40. Kellogg, E.A., 2000. The grasses: a case study in macroevolution. Annu. Rev. Ecol. Syst. 31, 217–238.CrossRefGoogle Scholar
  41. Kramer, E.M., Di Stilio, V.S., Schluter, P.M., 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 1–11.CrossRefGoogle Scholar
  42. Krizek, B.A., Meyerowitz, E.M., 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22.PubMedGoogle Scholar
  43. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C., 2003. The evolutionary origin of complex features. Nature 423, 139–144.PubMedCrossRefGoogle Scholar
  44. Levinton, J., Dubb, L., Wray, G.A., 2004. Simulations of evolutionary radiations and their application to understanding the probability of a Cambrian explosion. J. Paleont. 78, 31–38.CrossRefGoogle Scholar
  45. Lewis, E.B., 1994. Homeosis: the first 100 years. Trends Genet. 10, 341–343.PubMedCrossRefGoogle Scholar
  46. Lönnig, W.-E., 2004. Dynamic genomes, morphological stasis, and the origin of irreducible complexity. In: Parisi, V., De Fonzo, V., Aluffi-Pentini, F. (Eds.), Dynamical Genetics. Research Signpost, Trivandrum, India, pp. 101–119.Google Scholar
  47. Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.Google Scholar
  48. Mayr, E., Provine, W.B., 1980. The Evolutionary Synthesis, Harvard University Press, Cambridge, MA.Google Scholar
  49. Meyerowitz, E.M., 2002. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485.PubMedCrossRefGoogle Scholar
  50. Meyerowitz, E.M., Smyth, D.R., Bowman, J.L., 1989. Abnormal flowers and pattern formation in floral development. Development 106, 209–217.Google Scholar
  51. Moritz, D.M.L., Kadereit, J.W., 2001. The genetics of evolutionary change in Senecio vulgaris L.: a QTL mapping approach. Plant Biol. 3, 544–552.CrossRefGoogle Scholar
  52. Murbeck, S.V., 1918. Über staminale Pseudapetalie und deren Bedeutung für die Frage nach der Herkunft der Blütenkrone. Lunds Universitets Årsskrift N.F. Avd. 2, Bd. 14, No. 25, Lund.Google Scholar
  53. Ohya, Y.K., Kuraku, S., Kuratani, S., 2005. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 107–118.CrossRefGoogle Scholar
  54. Opiz, P.M., 1821. 2. Capsella apetala Opiz. Eine neue merkwürdige Pflanze. Flora Nr. 28, oder: Botanische Zeitung, Regensburg, 28. Juli 1821.Google Scholar
  55. Philippe, H., Chenuil, A., Adoutte, A., 1994. Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl.), 15–25.Google Scholar
  56. Raff, R.A., 2005. Editorial: stand up for evolution. Evol. Dev. 7, 273–275.PubMedCrossRefGoogle Scholar
  57. Reichert, H., 1998. Eine kronblattlose Sippe des Hirtentäschels (Capsella bursa-pastoris) seit Jahren bestandsbildend bei Gau-Odernheim/Rheinhessen. Hessische Floristische Rundbriefe 47 (4), 53–55.Google Scholar
  58. Reif, W.-E., Junker, T., Hoßfeld, U., 2000. The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci. 119, 41–91.Google Scholar
  59. Riedl, R., 1977. A systems-analytical approach to macro-evolutionary phenomena. Quart. Rev. Biol. 52, 351–370.PubMedCrossRefGoogle Scholar
  60. Rieppel, O., 2001. Turtles as hopeful monsters. Bioessays 23, 987–991.PubMedCrossRefGoogle Scholar
  61. Ronse De Craene, L.P., 2003. The evolutionary significance of homeosis in flowers: a morphological perspective. Int. J. Plant Sci. 164, S225-S235.CrossRefGoogle Scholar
  62. Rudall, P.J., Bateman, R.M., 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77, 403–441.PubMedCrossRefGoogle Scholar
  63. Rudall, P.J., Bateman, R., 2003. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci. 8, 76–82.PubMedCrossRefGoogle Scholar
  64. Rutishauser, R., Isler, B., 2001. Developmental genetics and morphological evolution of flowering plants, especially bladderworths (Utricularia): fuzzy Arberian morphology complements classical morphology. Ann. Bot. 88, 1173–1202.CrossRefGoogle Scholar
  65. Rutishauser, R., Moline, P., 2005. Evo-devo and the search for “sameness” in biological systems. In: Richter, S., Olsson, L. (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 213–242.PubMedCrossRefGoogle Scholar
  66. Sattler, R., 1988. Homeosis in plants. Am. J. Bot. 75, 1606–1617.CrossRefGoogle Scholar
  67. Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.Google Scholar
  68. Stuessy, T.F., 2004. A transitional-combinational theory for the origin of angiosperms. Taxon 53, 3–16.CrossRefGoogle Scholar
  69. Svensson, M.E., 2004. Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Dev. Genes Evol. 214, 418–421.PubMedCrossRefGoogle Scholar
  70. Theißen, G., 2000. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower. Bioessays 22, 209–213.PubMedCrossRefGoogle Scholar
  71. Theißen, G., 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.PubMedCrossRefGoogle Scholar
  72. Theißen, G., 2002. Orthology: secret life of genes. Nature 415, 741.PubMedGoogle Scholar
  73. Theißen, G., 2005. Birth, life and death of developmental control genes: new challenges for the homology concept. In: Richter, S., Olsson, L., (Eds.), Evolutionary Developmental Biology: New Challenges to the Homology Concept? Theory Biosci. 124, pp. 199–212.PubMedGoogle Scholar
  74. Theißen, G., Becker, A., 2004. Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit. Rev. Plant Sci. 23, 129–148.CrossRefGoogle Scholar
  75. Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U., Saedler, H., 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.PubMedCrossRefGoogle Scholar
  76. Theißen, G., Becker, A., Kirchner, C., Münster, T., Winter, K.-U., Saedler, H., 2002. How land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk, Q.C.B., Bateman, R.M., Hawkins, J.A. (Eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 173–205.Google Scholar
  77. Trattinnick, L., 1821. Botanische Bemerkungen. Flora 1821, 723.Google Scholar
  78. Valentine, J.W., Jablonski, D., Erwin, D.H., 1999. Fossils, molecules, and the embryo: new perspectives on the Cambrian explosion. Development 126, 851–859.PubMedGoogle Scholar
  79. Vargas, A.O., Fallon, J.F., 2005. Birds have dinosaur wings: the molecular evidence. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 86–90.CrossRefGoogle Scholar
  80. Vergara-Silva, F., 2003. Plants and the conceptual articulation of evolutionary developmental biology. Biol. Philos. 18, 249–284.CrossRefGoogle Scholar
  81. Wagner, G.P., 2000. What is the promise of developmental evolution: Part I: why is developmental biology necessary to explain evolutionary innovations? J. Exp. Zool. (Mol. Dev. Evol.) 288, 95–98.CrossRefGoogle Scholar
  82. Wagner, G.P., Gauthier, J.A., 1999. 1,2,3=2,3,4: a solution to the problem of the homology of the digits in the avian hand. Proc. Natl. Acad. Sci. USA 96, 5111–5116.PubMedCrossRefGoogle Scholar
  83. Wagner, G.P., Laubichler, M.D., 2004. Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plan and evolvability. J. Exp. Zool. (Mol. Dev. Evol.) 302B, 92–102.CrossRefGoogle Scholar
  84. Wagner, G.P., Müller, G.B., 2002. Evolutionary innovations overcome ancestral constraints: a re-examination of character evolution in male sepsid flies (Diptera: Sepsidae). Evol. Dev. 4, 1–6.PubMedCrossRefGoogle Scholar
  85. Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., Doebley, J.F., 2005. The origin of the naked grains of maize. Nature 436, 714–719.PubMedCrossRefGoogle Scholar
  86. Wang, R.-L., Stec, A., Hey, J., Lukens, L., Doebley, J., 1999. The limits of selection during maize domestication. Nature 398, 236–239.PubMedCrossRefGoogle Scholar
  87. Weiss, K.M., 2005. The phenogenetic logic of life. Nat. Rev. Genet. 6, 36–46.PubMedCrossRefGoogle Scholar
  88. Wray, G.A., Levinton, J.S., Shapiro, L.H., 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568–573.CrossRefGoogle Scholar
  89. Wright, S., 1941. The material basis of evolution by R. Goldschmidt (review). Sci. Monthly 53, 165–170.Google Scholar

Copyright information

© Elsevier GmbH 2005

Authors and Affiliations

  1. 1.Lehrstuhl für GenetikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations