Skip to main content
Log in

Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice

Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Mephedrone is a recreationally used synthetic cathinone, relatively new abusive substances with molecular structure similar to amphetamine. As there is still lack of scientific data regarding mechanisms of action as well as metabolism of mephedrone, especially in aspects other than neurotoxicity, addiction or behavioral changes, therefore we aimed, for the first time, to investigate potential pro-oxidative actions of a single dose of mephedrone in organs other than brain and its structures, i.e. in liver, kidneys, heart and spleen of Swiss mice.

Methods

The following biomarkers of oxidative stress were measured: concentration of ascorbic acid (AA) and malondialdehyde (MDA) as well as total antioxidant capacity (TAC) of the tissues homogenates.

Results

Our study revealed that mephedrone intoxication induces oxidative stress by reducing concentration of AA and TAC and increasing concentration of MDA in these organs.

Conclusions

Such occurred state of antioxidant-oxidant imbalance may be etiopathological factor of a number of severe diseases within cardiovascular, digestive as well as immunological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. https://doi.org/www.emcdda.europa.eu/publications/drug-profiles/syntheticcathinones. Accessed: 17 July 2017.

  2. Pantano F., Tittarelli R, Mannocchi G, Pacifici R, di Luca A, Busardò FP, et al. Neurotoxicity induced by mephedrone: an up-to-date review. Curr. Neuropharmacol 2017;15:738–49, doi:https://doi.org/10.2174/1570159x14666161130130718.

    CAS  Google Scholar 

  3. Linhart I, Himl M, Zidkova M, Balikova M, Lhotkova E, Palenicek T. Metabolic profile of mephedrone: identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites. Toxicol Lett 2016;240:114–21, doi:https://doi.org/10.1016/j.toxlet.2015.10.025.

    CAS  PubMed  Google Scholar 

  4. EMCDDA Risk assessments: report on the risk assess- ment of mephedrone in the framework of the council decision on new psychoactive substances. https://doi.org/www.emcdda.europa.eu/attachements.cfm/att_116646_EN_TDAK11001ENC_WEB-OPTlMlSED%20FlLE. Accessed: 25072017.

  5. Wood DM, Davies S, Puchnarewicz M, Button J, Archer R, Ovaska H, et al. Recreational use of mephedrone (4-Methylmethcathinone, 4-MMC) with associated sympathomimetic toxicity. J Med Toxicol 2010;6:327–30, doi:https://doi.org/10.1007/s13181-010-0018-5.

    PubMed  PubMed Central  Google Scholar 

  6. Skowronek R. Mephedrone and its new derivatives — toxicological, medical and legal aspects. Probl Kryminal 2012;275:54–61 Article in Polish.

    Google Scholar 

  7. Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, et al. Mephedrone (4-methylmethcathinone; meow meow): chemical, pharmacological and clinical issues. Psychopharmacology (Berl) 2011;214:593–602, doi:https://doi.org/10.1007/s00213-010-2070-x.

    CAS  Google Scholar 

  8. Luciano RL, Perazella MA. Nephrotoxic effects of designer drugs: synthetic is not better! Nat Rev. Nephrol 2014;10:314–24.

    CAS  PubMed  Google Scholar 

  9. Hazel Torrance GC. The detection of mephedrone (4-methylmethcathinone) in 4 fatalities in Scotland. Forensic Sci Int 2010;202:e62–3, doi:https://doi.org/10.1016/j.forsciint.2010.07.014.

    Google Scholar 

  10. Schifano F, Corkery J, Ghodse AH. Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, meow meow) in the United Kingdom. J Clin Psychopharmacol 2012;32:710–4, doi:https://doi.org/10.1097/JCP.0b013e318266c70c.

    CAS  PubMed  Google Scholar 

  11. Roberts L, Ford L, Patel N, Vale JA, Bradberry SM. 11 analytically confirmed cases of mexedrone use among polydrug users. Clin Toxicol 2017;55:181–6, doi:https://doi.org/10.1080/15563650.2016.1271424.

    CAS  Google Scholar 

  12. Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I, et al. Effects of imperatorin on nicotine-induced anxiety- and memory-related responses and oxidative stress in mice. Physiol Behav 2013;122:46–55, doi:https://doi.org/10.1016/j.physbeh.2013.08.019.

    CAS  PubMed  Google Scholar 

  13. Antoniazzi CTD, Boufleur N, Dolci G, Roversi K, Kuhn F, Pase CS, et al. Influence of neonatal tactile stimulation on amphetamine preference in young rats: parameters of addiction and oxidative stress. Pharmacol Biochem Behav 2014;124:341–9, doi:https://doi.org/10.1016/j.pbb.2014.07.001.

    CAS  PubMed  Google Scholar 

  14. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981–90, doi:https://doi.org/10.1016/j.cellsig.2012.01.008.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radic Biol Med 2005;39:841–52, doi:https://doi.org/10.1016/j.freeradbiomed.2005.06.025.

    CAS  PubMed  Google Scholar 

  16. Piao MJ, Yoo ES, Koh YS, Kang HK, Kim J, Kim YJ, et al. Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci 2011;12:2618–30, doi:https://doi.org/10.3390/ijms12042618.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ginsburg I, Kohen R, Shalish M, Varon D, Shai E, Koren E. The oxidant-Scavenging abilities in the oral cavity may be regulated by a collaboration among antioxidants in saliva, microorganisms, blood cells and polyphenols: a chemiluminescence-based study. PLoS One 2013;8:1–11, doi:https://doi.org/10.1371/journal.pone.0063062.

    Google Scholar 

  18. León-gonzález AJ, Auger C, Schini-kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 2015;98:371–80, doi:https://doi.org/10.1016/j.bcp.2015.07.017.

    PubMed  Google Scholar 

  19. Kasprzak KS, Diwan BA, Kaczmarek MZ, Logsdon DL, Fivash MJ, Salnikow K. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knockout mice and wild-type C57BL mice. Toxicol Appl Pharmacol 2011;257:32–7, doi:https://doi.org/10.1016/j.taap.2011.08.015.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lõpez-Arnau R, Martínez-Clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol 2012;167:407–20, doi:https://doi.org/10.1111/j.1476-5381.2012.01998.x.

    PubMed  PubMed Central  Google Scholar 

  21. Vardakou I, Pistos C, Spiliopoulou C. Drugs for youth via Internet and the example of mephedrone. Toxicol Lett 2011;201:191–5, doi:https://doi.org/10.1016/j.toxlet.2010.12.014.

    CAS  PubMed  Google Scholar 

  22. DeLarge AF, Erwin LL, Winsauer PJ. Atypical binding at dopamine and serotonin transporters contribute to the discriminative stimulus effects of mephedrone. Neuropharmacology 2017;119:62–75, doi:https://doi.org/10.1016/j.neuropharm.2017.04.006.

    CAS  PubMed  Google Scholar 

  23. Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Kurzepa J, Biala G. Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models. Neurochem Res 2015;40:1083–93, doi:https://doi.org/10.1007/s11064-015-1566-5.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 1996;239:70–6, doi:https://doi.org/10.1006/abio.1996.0292.

    CAS  PubMed  Google Scholar 

  25. Kyaw A. A simple colorimetric method for ascorbic acid determination in blood plasma. Clin Chim Acta 1978;86:153–7.

    CAS  PubMed  Google Scholar 

  26. Walton NM, Shin R, Tajinda K, Heusner CL, Kogan JH, Miyake S, et al. Adult neurogenesis transiently generates oxidative stress. PLoS One 2012;7, doi:https://doi.org/10.1371/journal.pone.0035264.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cadenas E, Sies H. Oxidative stress: excited oxygen species and enzyme activity. Adv Enzyme Regul 1985;23:217–37.

    CAS  PubMed  Google Scholar 

  28. Shiue CY, Shiue GG, Rysavy JA, Pleus RC, Huang H, Bai LQ, et al. Fluorine-18 and carbon-11 labeled amphetamine analogs-Synthesis, distribution, binding characteristics in mice and rats and a PET study in monkey. Nucl Med Biol 1993;20:973–81, doi:https://doi.org/10.1016/0969-8051(93)90098-F.

    CAS  PubMed  Google Scholar 

  29. Luethi D, Liechti ME, Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 2017;387:57–66, doi:https://doi.org/10.1016/j.tox.2017.06.004.

    CAS  PubMed  Google Scholar 

  30. Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, et al. Toxicity of amphetamines: an update. Arch Toxicol 2012;86:1167–231, doi:https://doi.org/10.1007/s00204-012-0815-5.

    CAS  PubMed  Google Scholar 

  31. Busardò FP, Kyriakou C, Napoletano S, Marinelli E, Zaami S. Mephedrone related fatalities: a review. Eur Rev Med Pharmacol Sci 2015;19:3777–90.

    PubMed  Google Scholar 

  32. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K. In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal 2013;5:430–8, doi:https://doi.org/10.1002/dta.1369.

    CAS  PubMed  Google Scholar 

  33. Berney-Meyer L, Putt T, Schollum J, Walker R. Nephrotoxicity of recreational party drugs. Nephrology 2012;17:99–103, doi:https://doi.org/10.1111/j.1440-1797.2011.01537.x.

    CAS  PubMed  Google Scholar 

  34. Pendergraft 3rd WF, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL. Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol 2014;9:1996–2005, doi:https://doi.org/10.2215/CJN.00360114.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol 2011;164:1949–58, doi:https://doi.org/10.1111/j.1476-5381.2011.01499.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, et al. The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS J 2017, doi:https://doi.org/10.1111/febs.14177.

    CAS  PubMed  Google Scholar 

  37. Assis MA, Collino C, Figuerola MDL, Sotomayor C, Cancela LM. Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells. J Neuroimmunol 2006;178:62–75, doi:https://doi.org/10.1016/j.jneuroim.2006.05.009.

    CAS  PubMed  Google Scholar 

  38. Friedman H, Eisenstein TK. Neurological basis of drug dependence and its effects on the immune system. J Neuroimmunol 2004;147:106–8, doi:https://doi.org/10.1016/j.jneuroim.2003.10.022.

    CAS  PubMed  Google Scholar 

  39. Assis MA, Hansen C, Lux-Lantos V, Cancela LM. Sensitization to amphetamine occurs simultaneously at immune level and in met-enkephalin of the nucleus accumbens and spleen: an involved NMDA glutamatergic mechanism. Brain Behav Immun 2009;23:464–73, doi:https://doi.org/10.1016/j.bbi.2009.01.003.

    CAS  PubMed  Google Scholar 

  40. Saito M, TERADA M, KAWATA T, Ito H, SHIGEMATSU N, Kromkhun P, et al. Effects of single or repeated administrations of methamphetamine on immune response in mice. Exp Anim 2008;57:35–43, doi: 10.153:expanim.57.35.

    CAS  PubMed  Google Scholar 

  41. Belton P, Sharngoe T, Maguire FM, Polhemus M. Cardiac infection and sepsis in 3 intravenous bath salts drug users. Clin Infect Dis 2013;56:102–4, doi:https://doi.org/10.1093/cid/cit095.

    Google Scholar 

  42. Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, et al. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br J Pharmacol 2016, doi:https://doi.org/10.1111/bph.13547.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. German CL, Fleckenstein AE, Hanson GR. Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci 2014;97:2–8, doi:https://doi.org/10.1016/j.lfs.2013.07.023.

    CAS  PubMed  Google Scholar 

  44. Meng H, Cao J, Kang J, Ying X, Ji J, Reynolds W, et al. Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat. Toxicol Lett 2012;208:62–8, doi:https://doi.org/10.1016/j.toxlet.2011.10.010.

    CAS  PubMed  Google Scholar 

  45. Borek HA, Holstege CP. Hyperthermia and multiorgan failure after abuse of bath salts containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 2012;60:103–5, doi:https://doi.org/10.1016/j.annemergmed.2012.01.005.

    PubMed  Google Scholar 

  46. Puerta E, Hervias I, Goñi-Allo B, Zhang SF, Jordán J, Starkov AA, et al. Methylenedioxymethamphetamine inhibits mitochondrial complex i activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 2010;160:233–45, doi:https://doi.org/10.1111/j.1476-5381.2010.00663.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hysek CM, Fink AE, Simmler LD, Donzelli M, Grouzmann E, Liechti ME. alpha (1)-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 2013;33:658–66, doi:https://doi.org/10.1097/JCP.0b013e3182979d32.

    CAS  PubMed  Google Scholar 

  48. Schindler CW, Thorndike EB, Blough BE, Tella SR, Goldberg SR, Baumann MH. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats. Br J Pharmacol 2014;171:83–91, doi:https://doi.org/10.1111/bph.12423.

    CAS  PubMed  Google Scholar 

  49. Wu Q, Ni X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 2015;16:13–9.

    PubMed  Google Scholar 

  50. ÓJ Pozo, Ibáñez M, Sancho JV, Lahoz-Beneytez J, Farré M, Papaseit E, et al. Mass spectrometric evaluation of mephedrone in vivo human metabolism: identification of phase I and phase II metabolites, including a novel succinyl conjugate. Drug Metab Dispos 2015;43:248–57, doi:https://doi.org/10.1124/dmd.114.061416.

    PubMed  Google Scholar 

  51. Dragogna F, Oldani L, Buoli M, Altamura AC. A case of severe psychosis induced by novel recreational drugs. F1000Research 2014;3:21, doi:https://doi.org/10.12688/f1000research.3-21.v1.

    PubMed  PubMed Central  Google Scholar 

  52. Herzig DA, Brooks R, Mohr C. Inferring about individual drug and schizotypy effects on cognitive functioning in polydrug using mephedrone users before and after clubbing. Hum Psychopharmacol 2013;28:168–82, doi:https://doi.org/10.1002/hup.2307.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Boguszewska-Czubara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkowski, P., Jankowski, K., Budzyńska, B. et al. Potential pro-oxidative effects of single dose of mephedrone in vital organs of mice. Pharmacol. Rep 70, 1097–1104 (2018). https://doi.org/10.1016/j.pharep.2018.05.010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.05.010

Keywords

Navigation